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1 General Introduction

A primary goal of modern number theory is to understand the absolute Galois
groups of certain classes of fields, among them number fields and their completions.
During the 20th Century, it became clear that one of the best ways to study a group
is to study its representations, and one of the best places to look for representations
is in algebraic geometry. Even before Grothendieck’s theory of schemes, algebraic
geometers could think of an abelian variety A “defined over a field K,” and thus
number theorists could represent the Galois group ¥ = Gal(K/K) by its action
on (what we now call) the geometric points A(K). It is in this context that the
Galois representation which we now know as the “/-adic Tate module” T;(A) was
first studied by Weil. Classically, Ty(A) = y'LnA(I? )[£"], the limit taken with respect
to the maps A(K)[¢"] — A(K)[¢" '] induced by multiplication by £. If K is the
field of fractions of a mixed characteristic (0,p) discrete valuation ring R and A
is “defined over R” with good reduction, then T;(A) for ¢ # p turns out to be an
unramified ¥-module. Thus, when R has finite residue field k, the ¥-action in such
cases is determined by the action of a fixed choice of arithmetic Frobenius element
in ¢/I = Gal(k/k) = Z. Weil proved that this action has characteristic polynomial
in Z[z] independent of ¢ # p, encoding the number of k-rational points on the
“reduction” of A.

However, T),(A) is much more mysterious. The reason became apparent during
the development of the theory of group schemes: the finite flat p™-torsion group
schemes o7 [p"] of the Néron model of A over R are not étale (whereas 27 [¢"] is étale
for £ # p). From the modern point of view, we find that the R-group scheme </ [p"]
encodes a lot of subtle information about A. On the other hand, since char K = 0,
the generic fiber of o/[p"] is étale, so there is a fully faithful functor @7k [p"] ~~
A[p"|(K) which identifies the p-power torsion generic fiber group scheme /i [p™]
with the Galois module structure on its geometric points A(K)[p"]. Thus, as we
will discuss in Part II, studying the Tate module T),(A) is equivalent to studying
the generic fibers @75 [p"]. However, the p-adic Tate module Galois representation is
highly ramified and so can only be understood through a study of the structure of
the various schemes <7[p"]. This interplay between relative geometry and (generic)
Galois modules allowed Tate to prove several remarkable theorems [11]. Before we
discuss Tate’s theorems, we provide some motivation.

If A is a compact connected complex Lie group of dimension g (e.g., A = X"
for an abelian variety X over C), then there is an isomorphism of complex Lie
groups A = V/A, where V' = H°(4,Q")V is a g-dimensional C-vector space and
A =H;(A,Z) is a full lattice in V. It is a classical (analytical) result that there is
a canonical decomposition

(1) H!(4,C) = H'(4,0") @ H'(4, "),

where Q' is the sheaf of holomorphic 1-forms on A and Q' is the sheaf of anti-
holomorphic 1-forms. If AY is the dual complex torus (constructed classically as
v’ /AL if A = V/A) and t (resp. t*) denotes the tangent space (resp. cotangent
space) at the identity, we may rewrite (1) as

HOmz(Hl(A, Z), C) = tAv ® t:k4-



In the case of an abelian variety over a local field K, Tate proved that there is
a similar decomposition in the étale cohomology after extending scalars to Cx (the
completion of an algebraic closure of K). To understand the statement, we recall
what it means to twist a Galois module by a multiplicative character of the Galois
group. f ¥ = Gal(K/K) and x : 4 — K* is any continuous multiplicative character
of 4, then given a 4-module M we define the twist of M by x, denoted M (x), to be
the same underlying K-vector space with a new action given by (s,m) — x(s)s(m).
In the case where x is the p-adic cyclotomic character e, : 4 — Aut(p,(K)) =
Z,, we will write M (n) for M(e;). Tate showed that for the natural ¥-action on
Ck, there is a canonical ¥ -equivariant decomposition, now called the Hodge-Tate
decomposition,

(2) HOmzp(Tp(A), CK) = (tAv ([X()CK) D (tz %CK(—l))

(The analogy with the classical Hodge decomposition (1) over C is made clearer
when we observe that for A = V/A, T,(A) = Z,®zH;(A,Z).) Like the classical
Hodge decomposition, the proof of the Hodge-Tate decomposition relies heavily on
(rigid) analytic techniques. For a finite-dimensional K-vector space V with a con-
tinuous ¥-action, the property (generalizing (2)) that the semi-linear representation
V @k Ck break up as a direct sum of various twists Cx(n) is a strong condition
(as we will see in Part IT). Therefore Tate’s analytic result gives some insight into
the Galois-module structure of the p-adic Tate module T},(A) (which is an algebraic
object).

Tate proved the Hodge-Tate decomposition in the more general context of p-
Barsotti-Tate groups. Given a base scheme S and an abelian scheme & of relative
dimension g over S, the first step in forming a “p-adic Tate module over S” is the
formation of the (scheme-theoretic) kernels </ [p™]. These are finite locally free S-
group schemes of order p?9" and the canonical closed immersion & [p"] — &/ [p"*!]
identifies 7 [p"] with the kernel of [p"] on .«7[p"*!]. For reasons which will become
clear shortly, it is to our advantage to view (<7[p"]) as a directed system of finite
locally free commutative S-group schemes. If &’ is another abelian scheme over S,
then any map of abelian schemes & — & over S induces a compatible collection of
maps </ [p"] — &/"[p"] over S, so there is a functor pBTg from abelian schemes over
S to certain directed systems of finite locally free commutative S-group schemes.
In general, a directed system of finite locally free commutative S-group schemes
G = (Gp,in) such that G, has order p™* (for a fixed h) and i, : G, = Gpny1 is
a closed immersion identifying G, with G,11[p"] will be called a p-Barsotti- Tate
group over S. Homomorphisms between p-Barsotti-Tate groups G — H are just
compatible systems of morphisms G,, — H,,. We see that the functor pBTg takes
values in the category of p-Barsotti-Tate groups over S. Any p-Barsotti-Tate group
is automatically equipped with faithfully flat group morphisms j, : G, — Gp_1
generalizing “multiplication by p” &/[p"] — &/ [p"~!] for abelian schemes.

In the case of an abelian scheme over R, taking points in K yields the inverse
system of Galois modules (G, (K), j,(K)) whose limit is exactly T),(#/ ), and there-
fore we see that we may recover T,(#k) from pBTp(«/). By analogy with the
case of an abelian scheme over R, given a p-Barsotti-Tate group G = (G,) over
R, we define the generic fiber Gk of G to be the system ((G,)k, (in)x) formed by



the generic fibers of the finite stages and we define the Tate module T'(G) of G to
be T(Gk) = lim Gy (K), a finite free Z,-module with continuous ¢¥-action. Tate’s
general result says that for any p-Barsotti-Tate group (G,) over R,

Homzp(T(G), CK) = (tgv % CK) D (tz; % CK(—I))

(where t; and tgv are the “tangent spaces” of G and its “dual” p-Barsotti-Tate
group GV). Most of this thesis is devoted to proving this result and explaining the
numerous tools from algebraic geometry and number theory (not all of which are
easily accessible in the literature) which are required for the proof.

Having established the Hodge-Tate decomposition for arbitrary p-Barsotti-Tate
groups, Tate was then able to use it to prove the astonishing fact (which we will call
the Isogeny Theorem) that the generic fiber functor G ~ G is fully faithful on the
category of p-Barsotti-Tate groups over R. Because char K = 0, the generic fiber of
any p-Barsotti-Tate group is étale, and it follows that G ~» T(Gk) defines a fully
faithful functor. Thus, we see that a p-Barsotti- Tate group G over R is completely
determined by its Tate module T'(G) (or, equivalently, by Gk ). Such an equivalence
with the generic fiber is manifestly untrue for finite flat group schemes over R (e.g.,
both the constant group Z/pZ and the group K, have the same generic fiber over
Z[(p], but they are quite different on the closed fiber, so the generic isomorphism
determined by 1 — (,, will not extend to an isomorphism over the entire base). Thus,
the Isogeny Theorem is a deep theorem about the entire system (Gy). In Part I,
we will develop a theory of formal groups over R which will allow us to encapsulate
all of the data about the system (G),) in a single object, the “direct limit formal
group” li_n;G’n. In order to allow such natural constructions as the connected-étale
sequence in the formal case, we will need to work over rather general (highly non-
Noetherian) base rings when setting up the theory. The direct limit formal group
of a p-Barsotti-Tate group will be called a p-divisible group.

The proof of Tate’s theorems proceeds in two general stages. We will first study
the formal properties of p-divisible groups which become apparent only in the limit.
In particular, we will attach an invariant, the “dimension,” to a p-Barsotti-Tate
group G = (G,) by showing that the “connected” p-divisible group G° arising
from the connected components of the G, is a “formal Lie group.” (The “formal
smoothness” property inherent in G° is invisible at every finite stage, and is an
example of a property which can only be seen in the limit.) After looking at the
formal properties of p-divisible groups, we will use the formally smooth structure
of connected p-divisible groups to give an analytic connection between the finite
stages of p-Barsotti-Tate groups and the limiting p-divisible groups. In particular,
we will attach a rigid analytic group G*" over K (arising from the “connected
component”) to a p-Barsotti-Tate group G over R. Given such an analytic group
G?*", we will define a logarithm which analytically identifies a neighborhood of the
identity of G®" with a neighborhood of the origin in the tangent space tg of G*"
at the identity. Using Cartier duality, we will prove the essential result relating
the dual of the Tate module of Gi to tg, and this will imply the remarkable fact
that Homgz,(T(Gk), Ck) admits a Hodge-Tate decomposition which encodes the
dimension of G (over R). This provides the crucial link between T'(G) and the
global properties of G over R. Finally, the smoothness of the connected component




of G will enable us to calculate the discriminant of the “finite flat” map [p"]: G — G
by an analysis of the differential forms on G. This calculation, combined with the
“dimension sensitivity” of T'(G), will imply the Isogeny Theorem.



Notation and prerequisites

We maintain the usual conventions regarding the rational integers, rational numbers,
and complex numbers, denoting these by Z, Q, and C respectively.

We assume familiarity with several non-trivial topics (we list each with its rele-
vant notation):
1) Local class field theory and Galois cohomology (e.g., [10]).

Notation. A local field K will always be a field of characteristic zero complete with
respect to a discrete valuation, with residue field of positive characteristic.
(In general, we say that a discrete valuation ring R is mized character-
istic (0,p) to indicate that the fraction field of R has characteristic zero,
while the residue field has characteristic p.) We will denote by Cx the
completion of an algebraic closure K of K.

The symbol ¢ will be reserved for the absolute Galois group of K (i.e.,
Gal(K/K)); we will usually use /# to denote either an open or closed
subgroup of ¥4. We will use K, to denote a Z,-extension of K, and we
will write g = Gal(K/K).

The p-adic cyclotomic character of 4 will be denoted by ¢, : 4 — Z;
it is determined by the action of ¢ on the p-power roots of unity in
K. In general, given a %-action on an Ox-module M and a continuous
multiplicative character x : ¢4 — O}, the twist of M by x, denoted
M(x), is defined to be the same underlying &'x-module with the new
action g.m = x(g)g(m). In the case of the p-adic cyclotomic character,
the twist M(e;) will be written M (n).

2) Basic elements of the theory of schemes.

Notation. Given an S-scheme X and a morphism 7' — S, we will denote by Xt the
base change X xg7T. Given maps f: T — S and g: X — §, we will use
T X754 X to denote the fiber product 7" xg X when we want to make
the maps explicit.

3) Knowledge of finite group schemes, at least at the level of Tate’s article [12] (in-
cluding the connected-étale sequence over a Henselian local base) or the appropriate
sections of Waterhouse’s book [13], especially the theory of Cartier duality for finite
locally free commutative group schemes. More generally, we expect that the reader
has at least heard of affine group schemes and is aware of the Hopf-algebraic dual
formulation of the theory.

Notation. A finite S-group scheme will always be assumed to be a finite locally
free commutative group scheme over S. (We will drop the commutativity
hypothesis on rare occasions; this will be made explicit when it happens.)
We will write |G| for the order of a finite group scheme G. We will often
refer to an S-group scheme as an S-group. If G is an ordinary finite
abelian group, we will let G¢ (or simply G when the base is clear from
context) denote the constant S-group sending an S-scheme T to locally
constant functions 7' — G.



Finally, we use the symbols [, ¢, and 4 to denote the end of proofs, examples,
and remarks, respectively.
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Part 1
Formal groups

Let Ap be the category of (commutative unitary) R-algebras. Given a p-Barsotti-
Tate group (G,) over R and an object A € ObjAg, the groups G,(A) form a
directed system of Z-modules, so there is a covariant functor G : A ~~ li_n>1Gn(A).
Unfortunately, G is not represented by an R-scheme, essentially because there is no
scheme large enough to simultaneously encode G(A) for all R-algebras A. However,
when R belongs to a certain class of rings (including complete local Noetherian rings)
we will see that by restricting our attention to the category Fg of finite Artinian
R-algebras, we can successfully “represent” G. Geometrically, this is the same as
restriction our attention to infinitesimal neighborhoods of points of the various G,.
We call a set-valued functor on Fr a formal functor.

In this Part, we will rigorously construct formal functors and describe the ways
in which we can represent them. Restricting our attention to group-valued formal
functors, we will formulate a theory of commutative formal groups which we will use
in Part IT to assemble p-Barsotti-Tate groups, initially defined as directed systems
of finite groups, into single group objects, p-divisible groups, which we can study ge-
ometrically (using smoothness, differential forms, etc.). Our study of formal groups
will produce results which are parallel to standard results in the theory of finite
group schemes.

Following our construction of the general theory of (commutative) formal groups,
we will consider two important specializations: formal groups in positive charac-
teristic and formal Lie groups. These two specializations will come together in
Part IT (Theorem 6.2.1) when we prove the crucial theorem of Serre and Tate that
over a complete Noetherian local ring with residue characteristic p, “connected” p-
divisible groups are identified with formal Lie groups for which multiplication by p
is an “isogeny.” (Our proof actually applies to a slightly larger class of base rings.)
Finally, we will study discriminants in locally free ring extensions in order to calcu-
late the discriminants of isogenies of formal Lie groups. These calculations will be
essential for the proof of Tate’s Isogeny Theorem.

2 Generalities

Before we define formal groups, we give some “pro-algebraic” preliminaries. For
the most part, we will only state the basic properties and theorems of pro-algebra,
indicating with a few words the essence of a proof or an especially important tech-
nique which we will use in the sequel. The most accessible source for this material
is [1], where the reader will find a clear and enlightening treatment which collects
in a single document the relevant material (with complete proofs) from Gabriel’s
development of these topics in SGAj;.

After our discussion of pro-algebra, we define formal groups and discuss their
general properties in preparation for a more detailed study beginning in Section 3.



2.1 Pro-algebra and formal functors

Let us begin our study of pro-algebra with some motivation. Suppose R is a com-
mutative ring. In the theory of finite R-groups, it is entirely natural to consider the
constant group G for an ordinary finite abelian group G which represents the functor
sending an R-scheme T to the locally constant functions 7' — G. The affine algebra
of G is ngGR = Homges(G, R) with the obvious Hopf structure. If f : G — G’ is
an injection of finite groups, the corresponding map on R-algebras is the surjection
[Iyee B — [l eq B given by projection (identifying G with f(G)).

In the case of the constant p-Barsotti-Tate group (p—lTLZ /Z), we expect by analogy

with ordinary groups that the corresponding “constant p-divisible group” should be
Q,/Z, and we naturally expect the “affine algebra” of Q,/Z, to be

i, [ 7= [[ 7

#Z/Z Qp/Zyp

which we notice is highly non-Noetherian. Furthermore, it is natural to impose a
topology on HQp /Z, R which allows us to retain the information that this group was
assembled from a particular system of finite groups.

The natural category of topological rings to work in is the category of pseudo-
compact rings, which we will discuss before we use them as a tool to “geometrize”
the theory of formal groups in Section 2.2.

2.1.1 Pseudocompact rings and profinite modules

We begin with a topological ring R which possesses a base for the topology at 0
defined by a collection I of (open) ideals of R. Requiring that the ring operations
be continuous with respect to this topology is the same as saying that a base at any
xz € Ris given by {& + 1 : 1 € Jg}. We say that R is separated if Nyey, I = (0) and
complete if it is separated and the natural map of topological rings R — @ resR/1
is an isomorphism. We will write (R,Jg) when Jp is not clear from context.

Definition 2.1.1. A topological ring (R,Jg) is pseudocompact if R is complete and
R/I is Artinian for all I € Jp.

Example 2.1.2. The most natural examples of pseudocompact rings are Artinian
rings and complete Noetherian local rings. In fact, any Noetherian pseudocompact
local ring must actually have the maximal-adic topology [1, Corollary 1.2.7]. O

A linearly topologized R-module is a topological R-module M (i.e., Rx M — M
is continuous) whose topology is defined at 0 by a set of open submodules Ay;. We
say that M is separated if Nxep,, N = (0) and complete if M is separated and the
natural map of topological R-modules M — @ Neay M/N is an isomorphism. A
topological R-algebra is a topological R-module which is simultaneously a topological
ring.

Definition 2.1.3. Given a pseudocompact ring R, a topological R-module M is
profinite over R if M is complete and M /M’ is finite over R for every M’ € Ay, A

10



profinite R-algebra is a topological R-algebra B which is profinite as an R-module.
Write Br for the category of profinite R-modules (with continuous module maps)
and Pp for the category of profinite R-algebras (with continuous R-algebra maps).

Remarks 2.1.4. 1) We did not require that the topology on a profinite R-algebra A
be defined by a base of open ideals. However, for future reference, we note that this
is in fact the case. It suffices to show that any open R-submodule M C A contains
an open ideal of A. But the multiplication map A x A — A is continuous, so there
is an open R-submodule N C A such that N- N C M. By profiniteness, A/N has
finitely many generators over R; choose ey, ... ,e, in A whose images generate A/N.
Since e; -0 = 0 for all i, we see that there is a some open R-submodule N’ C N such
that e; - N’ C M for all ¢, and therefore N' C A- N' C M, so A- N' is the desired
open ideal contained in M. Thus, we have shown that if A is a profinite algebra
over a pseudocompact ring, then A is pseudocompact.

2) If M is profinite and M’ C M is open, then M/M' is actually finite over
one of the Artinian quotients R/I of R. Indeed, the map R x M — M — M /M’ is
continuous and M /M’ has the discrete topology, so foranym € M, {r € R:rm =m
(mod M')} C R is open. The rest follows because M /M’ is finitely generated over
R. Thus, M/M' has finite length over R. ¢

Example 2.1.5. While it is not true that any finite module over R is profinite,
it is true that any finitely presented R-module admits a unique profinite R-module
structure (this follows from Proposition 2.1.9). Profiniteness depends upon the
topology and not just on the module: given a field k, the power series ring k[{ X;}]
in countably many indeterminates is profinite with the topology determined by the
ideals

(X5 X X5 (g {in e sin )

but not with the maximal-adic topology. (The quotient of k[{X;}] by the non-closed
ideal ({X;}) gives an example of a finite module over a pseudocompact ring which
is not profinite.) O

Example 2.1.6. If A is a finite R-algebra, finitely presented as an R-module (or
equivalently, as an R-algebra), then A with its unique profinite R-module structure
is a profinite R-algebra (and therefore a pseudocompact ring by Remark 2.1.4(1)).
O

Defining tensor products in such a way as to yield a useful theory of base change
requires some care.

Definition 2.1.7. Given two linearly topologized R-modules M and N, we define
the completed tensor product M @ N to be the limit

lim(M/M' @ N/N')

taken over triples (M',N',I) € Ay X Ay x Jg such that I annihilates both M’
and N’. This is linearly topologized with the inverse limit topology (with each
M/M'®g/; N/N' discrete).

11



It is not hard to see that ® is an associative and commutative bifunctor on P .

For arbitrary linearly topologized R-modules, the completed tensor product is
not very useful because there may not be any open ideal I which annihilates an
open submodule M’'. However, when M and N are profinite, the required triples
(M',N',IT) abound. We see that in the definition of M ®r N, we could just as easily
have formed the limit over triples (M', N’, I) drawn from any (R-module) bases for
topologies of M, N, and R and produced the same result.

Proposition 2.1.8. The category Pr is closed under
(1) product and finite direct sum (using the product topology),

(2) inverse limit,
(3) completed tensor product.

Furthermore, we see that the bifunctor ® satisfies the usual universal property
with respect to bilinear maps in Lg.
The basic Proposition governing maps in Bp, is the following [1, Theorem 1.2.2].

Proposition 2.1.9. Let R be a pseudocompact ring and M and N two profinite
R-modules. Suppose K C M is a closed submodule.

(1) Giving K the induced topology and M /K the quotient topology, K and MK
are profinite R-modules.

(2) If u : M — N is a continuous map of modules, then u is closed. In partic-
ular, injections coincide with closed embeddings and surjections coincide with
topological quotient maps.

(3) The category Pr is abelian if we take monomorphisms to be injections and
epimorphisms to be surjections.

Corollary 2.1.10. If R is a pseudocompact ring, a map f : M — N of profinite
R-modules is a topological isomorphism if and only if it is a continuous bijection.
Furthermore, any continuous map of profinite R-modules with dense image is a
surjection.

We see immediately that if M and N are profinite R-modules and J is a closed
ideal of R which annihilates both M and N, then the natural map M Qg N —
M® r/s IV is an isomorphism.

Corollary 2.1.11. If (M;) is an inverse system of profinite R-modules with sur-
jective transition maps, then the natural map @MZ — M; 1s surjective. In partic-
ular, l<in is an exact functor on the category of short exact sequences of profinite
R-modules.

Proposition 2.1.9 and its Corollaries make essential use of the non-trivial fact
that given an inverse system of R-module surjections u; : M; — N; with Artinian
kernels, the induced map v : mM — @N is a surjection. See [1, Theorem 1.2.2]
for the details.

One basic consequence of the definition of pseudocompact rings is that they
behave in many ways like Artinian rings.
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Proposition 2.1.12. Let R be a pseudocompact ring. Given an open mazimal ideal
m C R, the natural map R — Ry, is surjective and the kernel is a closed ideal. The
resulting quotient topology on Ry, makes it a profinite R-algebra and the map

I:R— [[ B
(where the product is taken over the open mazximal ideals) is a topological isomor-
phism.

Using Proposition 2.1.12, we can give the fundamental properties of ® [1, The-
orem 1.1.8 and Theorem 1.3.1]. Given a profinite R-module M, define M, =
M ®r Ry.

Proposition 2.1.13. Let R — S be a (continuous) map of pseudocompact rings
and let M and N be profinite R-modules.

(0) The natural map R®r M — M is an isomorphism.

(1) The operation M ~~ M ®r S gives a functor PBr — P, naturally compatible
with composites of maps of pseudocompact rings.

(2) The functor M Qg(-) : Br — Pr is right-ezact.
(3) Given an inverse system N; of profinite R-modules, the natural map

M%@Ni%yﬂw@m)

is a topological isomorphism. In particular, M & 1N = H(M@NZ)

(4) For each open maximal ideal m C R, the natural map M — My, is surjective
with closed kernel. The resulting quotient topology makes My, a profinite Ry,-
module and the natural map M — [] My over R = ] Rw is a topological
isomorphism. Thus, for any open ideal m C R, the natural map Ry Qr M —
Rm ®r M is an isomorphism. Similarly, there is a natural isomorphism

Homgs, (M, N) = [ [ Homgy, (M, New).

(Proposition 2.1.13(4) follows from Proposition 2.1.12 and parts (0) and (3) of
Proposition 2.1.13.)

Remark 2.1.14. One can also show that for any profinite R-algebra A and any pseu-
docompact ring S, the profinite S-algebra A ®p S represents the functor

Homcont(Aa : )

on Pg (the category of profinite S-algebras). This gives a good notion of base change,
which we will exploit in our study of formal schemes (cf. Proposition 2.1.26). ¢

Corollary 2.1.15. If R is pseudocompact,_M is a profinite R-module, and v C R
is a closed ideal, then (R/t)®r M = M/cM.
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Definition 2.1.16. Given a pseudocompact ring R and a profinite R-module M,
M is topologically flat (vesp. topologically faithfully flat) if and only if for every
sequence .¥ : 0 — Ny — Ny — N3 — 0 of profinite R-modules, M ®p .7 is exact if
& is exact (resp. if and only if . is exact). We call M topologically free if there is
a topological isomorphism M = []..; R for some index set J (where [ R is given
the product topology).

jeg

Lemma 2.1.17. A profinite A-algebra o : A — B is topologically faithfully flat if
and only if the structure map o is injective and topologically flat, and this is the
same as requiring that for each open maximal ideal m C A the profinite Ay -algebra
By is non-zero and topologically flat.

Proposition 2.1.18. Quer a complete Noetherian local ring, topological (faithful)
flatness is equivalent to (faithful) flatness. If R is any pseudocompact ring and M
a finite profinite R-module (resp. -algebra), then M is topologically (faithfully) flat
if and only if M is (faithfully) flat.

The following Proposition will prove useful in Part II and illustrates some of the
technical workings of this subject. We will use this result to show that the limit of a
direct system of surjections of finite group schemes is a surjection of formal groups.

Proposition 2.1.19. Fizx a pseudocompact base ring R. If A, — B, is an in-
verse system of topologically faithfully flat maps of profinite R-algebras then A =
}iLnAn — ].(ingn = B s topologically faithfully flat. In particular, an inverse limit
of topologically flat profinite R-algebras is topologically flat.

Proof. For any profinite A-module T" and any collection T}, of closed submodules
of T, call {T},} a defining collection if NT,, = (0). It is not hard to see that {7}
is a defining collection of closed submodules of T if and only if the natural map
T — limT/T), is an isomorphism.

By definition the canonical map A — A,, has closed kernel I,,. Therefore, given
a profinite A-module M, defining M, to be I,, M, we have

M:M%A:@(M%An) = lim M /M,,.

Suppose
S O0sNsMLpso

is a short exact sequence of profinite A-modules containing M. Define N,, = M,,NN
and P, = f(M,). For every n, the sequence

Zn:0— N/N, - M/M,, — P/P, -0

is exact. Because NM,, = (0), we see that {/N,} is a defining collection of closed
submodules of N. By the exactness of @1 on P4, where therefore see that {P,} is
a defining collection of closed submodules of P. By Corollary 2.1.10, it is not hard
to see that

B® .7 = lim(Bn ® .7y) = @(Bngfn),
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the first isomorphism following becaBse ® commutes with @ and {B, ®4.%,} is
coinitial in the inverse system for B ® 4 .. But B,, is topologically flat over A,,, so
B, ® A, -7n is exact. By the exactness of lim on short exact sequences of profinite A-
modules, we see that B is topologically flat over A. Similarly, by the left-exactness
of lim, we see that A — B is injective, and therefore B is topologically faithfully
flat over A by Lemma 2.1.17. O

The following Proposition will be useful in our study of the connected-étale
sequence for formal groups. Recall that a local ring A is Henselian if every finite A-
algebra breaks up as a product of finite local A-algebras (which are then themselves
Henselian).

Proposition 2.1.20. A pseudocompact local ring R is Henselian.

Proof. Given a finite R-algebra B, we see that B is a quotient of a finite free R-
algebra B'. Tt clearly suffices to show that B’ breaks up as a product of finite local
R-algebras, so we may assume that B is finitely presented as an R-module. By
Example 2.1.6, B is a profinite R-algebra, hence pseudocompact as a topological
ring. Therefore, B = [][ Bp, indexed by the open maximal ideals m C B. On
the other hand, every open maximal ideal of B must contract to the unique (open)
maximal ideal mg of R by integrality. Because open ideals are closed and continuous
maps of profinite R-algebras are closed, we see that B/mgB is a finite profinite
R/mp-algebra. Thus, there can be only finitely many open maximal ideals of B, so
B breaks up as a product of finitely many finite local R-algebras. U

A more profound example of the resonance between Artinian and pseudocompact
rings is the following Proposition, which will prove to be essential in the theory of
formal groups.

Proposition 2.1.21. Given a pseudocompact ring R and a profinite R-module M,
the following are equivalent

(1) M is a projective object in Pr;
(2) M is topologically flat over R;
(3) for any open mazmial ideal m C R, My, is topologically free over Ry,.

We see from the proof in [1, Theorem 1.3.6] that topologically free profinite
R-modules are projective in L.

The relationship with Artinian rings suggests one final Proposition which will
prove to be a useful tool.

Proposition 2.1.22 (Formal Nakayama’s Lemma). If (R,m, k) is a pseudo-
compact local ring and M is a profinite R-module such that M/mM = MQpk
vanishes, then M = 0.

Proof. Choosing an open submodule M’ C M, applying (-)®gk to the exact se-
quence
0—-M —-M— M/M -0
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yields a surjection M &gk — (M/M')®grk, so (M/M')&rk = 0. But M/M’
is discrete, so there is an initial object (M/M)'®rk in the inverse system for
(M/M')®p k and therefore 0 = (M/M") &gk = (M/M') Qg k. But M/M’ is finite
over R, so by the usual form of Nakayama’s Lemma, M/M' = 0. By completeness,
M =0. O

The following argument will be used often.

Corollary 2.1.23. Let (R,m, k) be a pseudocompact local ring. If f : M — N is a
map of topologically flat profinite R-modules, then f is an isomorphism if and only
if f®k: M®k — N®FE is an isomorphism.

Proof. By the Formal Nakayama’s Lemma, f is surjective if and only if f®k is
surjective. But if this holds, then f splits by topological flatness (which is the same
as projectivity), so therefore f is injective if and only if f ® k is injective. O

Having given the proof, we will refer to this as a “standard Formal Nakayama’s
Lemma argument” from now on.

We conclude this rapid but unpleasantly dry review of pseudocompact rings
and profinite modules with a caveat to the reader: in order to make a natural and
efficient summary of the results we will use, we have not stated the results in “logical
dependence” order. It is advisable that a reader who wants a detailed understanding
of this material carefully read [1].

2.1.2 Formal functors and pro-representability

Let R be a pseudocompact ring. Let Fr denote the category of finite Artinian
R-algebras (viewed as discrete profinite R-algebras by Example 2.1.2 and Remark
2.1.4(1)).

Definition 2.1.24. A formal functor is a set-valued functor on Fpg.

In algebraic geometry, the study of schemes over a ring k is tantamount to the
study of a specific full subcategory of the category of set-valued functors on Ay.
Abstractly, we could define an affine k-scheme to be a set-valued functor on Ay
which is representable by an object of A, and an arbitrary k-scheme is then a
functor which is “locally affine.” In a similar way, we single out a full “geometric”
subcategory of the formal functors to serve as the category of formal schemes.
However, we will not be able to represent a formal scheme with an object of Fp.
Instead, we will “pro-represent” it with an object of P (the category of profinite
R-algebras).

Observe that for objects A, B € ObjPr, Homgp, (A, B) = y’LnHom;pR(A,B/b),
where b ranges over the open ideals of B. Therefore, we can recover A by Yoneda’s
Lemma if we know the restriction of Homgp, (A, -) to Fr. We call the formal func-
tor Homyp, (4, - )|5, the formal spectrum of A, denoted Spfp A. We call Spfp A
topologically (faithfully) flat over R if A topologically (faithfully) flat over R.

Definition 2.1.25. A formal functor X : Fr — Set is pro-representable if there is
an A € ObjPr such X = Spfp A. A pro-representable formal functor is called a
formal R-scheme. We write A = O(Z").
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The usual arguments using Yoneda’s Lemma apply to formal schemes. In par-
ticular, we see that the category of formal schemes is equivalent to the opposite
category f]’(;zp. Let &Gchpi denote the category of formal R-schemes.

Proposition 2.1.26. The category Gchr has the following properties:
(1) Fiber products. Spfr(A) xspr,(c) SPfr(B) = Spfr(A&c B).

(2) Base change. Given a profinite R-algebra R', consider the embedding Fp —
Fr. The restriction of Spfp(B) to Fgr, denoted Spfr(B) g, is Spf /(B ®r R').
If (R,m, k) is local, we call Spfp(B)y = Spfy(B ®rk) the formal closed fiber
of B. More generally, if R — R’ is any continuous map of pseudocompact
rings, R'@r B is a profinite R'-algebra, so we may define the base change
of Spfr(B) to R’ by Spfp(B)r = Spfp (B®gr R'); see Remark 2.1.14. Base
change is compatible with fiber products.

(3) Direct limits. If Spfy(B;) is a directed system of formal schemes, then
lim Spfy(B;) = Spfp(lim B;).

(4) Formalization of finite, finitely presented R-schemes. Let Fing denote the cat-
egory of finite, finitely presented R-schemes. There is a fully faithful embedding
Finp < Gchpr which takes (faithfully) flat finite R-schemes to topologically
(faithfully) flat R-schemes.

Proposition 2.1.26(3) and Proposition 2.1.26(4) (together with Proposition 2.1.19)
are precisely what we need to assemble our p-Barsotti-Tate groups into formal limits
with good properties (e.g., topological flatness).

Definition 2.1.27. If f : Spfp A — Spfy B is a map of formal schemes, then by
Yoneda’s Lemma f is induced by a unique a map f* € Homgp, (B, A). We will call
f topologically (faithfully) flat if f* is topologically (faithfully) flat.

By analogy with ordinary algebraic geometry, we have the following Proposition.

Proposition 2.1.28 (Formal fiberwise criterion). If A and B are topologically
flat over R, then a map f : Spfp A — Spfy B is topologically (faithfully) flat if and
only if the base change fu : Spfr(A)r/m — SPfR(B)Rr/m is topologically (faithfully)
flat (as a map of formal R/m-schemes) for all open mazimal ideals m C R.

Proposition 2.1.29. If f : A — B is a map of profinite R-algebras and C is
a topologically faithfully flat profinite A-algebra, then f is finite (resp. finite free of
rank d, topologically flat, topologically faithfully flat, injective, surjective) if and only
if the same is true for C — C @4 B.

Sketch of a proof. The result for injectivity, surjectivity, topological flatness, and
topological faithful flatness follow easily from the definition of topological faithful
flatness once we note that the profinite R-module cokernel of f is a profinite A-
module. The result for finiteness follows by reducing to the case where A is local
and then using the Formal Nakayama’s Lemma to reduce to the closed fiber, where
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all profinite modules are topologically free. (We use the fact in this case that if By,
is finite over Ay, for all open maximal ideals m C A and there is an upper bound on
the number of generators as m varies, then B is finite over A.) The result in the
case of a finite free map of rank d follows by reducing to the case where A is local
(with some care) and combining the finite and topologically flat cases. O

None of the Propositions of this section is especially difficult to prove, but they
would all entail a great digression from the purpose of this thesis. Complete proofs
may be found in [1].

2.2 Formal groups

We are now ready to construct the objects which are of principal interest to us. Fix
a pseudocompact ring R throughout this section.

Definition 2.2.1. A formal R-group scheme (or simply formal R-group) is a topo-
logically flat formal R-scheme taking values in the category of groups.

While this all seems rather convoluted, formal R-group schemes arise quite nat-
urally.

Example 2.2.2. Suppose R is a complete Noetherian local ring. Let G be any flat
algebraic group scheme over R (so that G is locally of finite type) with identity
section ¢ : Spec R — G, and let m denote the closed point on the identity section of
G. Given an R-scheme T, call a point x € G(T') a small point if T is a finite Artinian
R-scheme and the image of z : T — G is supported at the closed point of the identity
section. It is easy to see (because € - £ = ¢ in the group law on G(Spec R)) that
restricting G to small points gives a functor G:Fr— Grp. Furthermore, since
any small point factors uniquely through (an Artinian quotient) of the local scheme
Spec Oy i, we see that G is pro-represented by the maximal-adic completion &y, g.
But G is flat and locally of finite type over R, so 0y ¢ is a Noetherian ring and is
faithfully flat over R because m lies over the closed point of Spec R. By the basic
theory of Noetherian local rings, 5,“,(; is faithfully flat over &y, . By the finite type
hypothesis and Proposition 2.1.18, we see that 5,“,(; is a topologically faithfully flat
profinite R-algebra, and therefore G = Spf R(ﬁmyg) is a formal R-group.

The construction of a formal group encoding the group law near the identity was
first done in the context of Lie groups as a way of creating an object intermediate
between the group and its Lie algebra. For algebraic groups over fields of charac-
teristic zero, the formal group so constructed (with small points) yields no more
information than the Lie algebra of the group. However, when the base field has
positive characteristic p, the formal group can detect non-reduced phenomena which
do not appear in the Lie algebra (which can only see the reduced structure on the
group). In particular, the formal group G stores information about p-power torsion
on GG, which may not appear geometrically in the form of classical points. We will
see an important application of this idea in Part I when we study p-divisible groups
(e.g., those arising from abelian schemes). O
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Example 2.2.3. Applying Example 2.2.2 to the multiplicative group G,,, we get
the formal multiplicative group Gn. Writing G,,, = Spec R[z,z~!], we see by making
the change of variable z = t + 1 that G, = Spfy R[]

Similarly, we may construct the formal additive group éa, and we see that if
G, = Spec R[z], then G, = Spf, R[z]. O

As in the case of a finite (or affine) group scheme over R, the theory of formal
R-groups admits a dual formulation in terms of formal Hopf algebras. Suppose G =
Spfp A is a formal R-group. Using Yoneda’s Lemma, we see that the multiplication,
the inversion morphism, and the identity section give rise to maps of profinite R-
algebras

m'iA—>ARA i A= A e*:A— R,

called the (formal) comultiplication, antipode, and augmentation, respectively. Con-
versely, given three such maps which satisfy the usual group axioms when viewed
as maps of formal schemes (i.e., given a formal Hopf algebra A), G = Spfp A is a
formal R-group.

Example 2.2.4. The formal Hopf maps for the formal multiplicative group are:

m*(t) =18t +t®1+tt,
t

syt

() 1+t

e*(t) = 0.

(This comes from the usual Hopf maps for the multiplicative group: m*(z) = z ® x,
i*(z) = 7%, and €*(z) = 1, after our change of variable x =t + 1.)

Similarly, the formal Hopf maps for the formal additive group are the usual ones:
m*(z) =zQ1+1®uz, i*(x) = —z, and *(z) = 0. O

Using the Hopf-theoretic approach, we can also construct formal group schemes
which are not otherwise “geometrically intuitive.”

Example 2.2.5. As an example, we can construct a type of formal group which
often arises in an arithmetic context: a discrete (constant) commutative group.
Given a commutative (set-theoretic) group G, we may define the constant group
G over R by declaring G = Spfp A, where A = [] gec eg with the formal Hopf
structure given by

m*:eg — Z en ey,
hi=g
it ieg e,
e" teg = dg1,
and extended by continuity and linearity. In Theorem 3.1.6, we will see how to

construct “twisted forms” of these constant groups (which become untwisted over a
suitable extension ring). O

We will encounter numerous examples of formal groups in Part 11, where we will
assemble p-Barsotti-Tate groups into formal limits.
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2.2.1 Duality

Recall that for finite locally free commutative group schemes over R, the usual
module-theoretic dualizing functor sending the finite locally free algebra A to the

locally free module
AY € Hompmod(A, R)

actually establishes a duality on the category of finite commutative R-group schemes.
This arises because the module-theoretic dualizing functor switches the algebra maps
with the Hopf maps, and the resulting object AV is a commutative cocommutative
Hopf algebra because Spec A is a commutative R-group.

When we try to extend this to the case of commutative formal groups, we have
serious difficulty if we try to work over an arbitrary pseudocompact base. Let us
restrict ourselves to the case where R is actually an Artinian local ring. Given a
profinite R-module M, the module M = Homgy, (M, R) is no longer profinite; it
is merely an R-module. In fact, we will see in a moment that it could be any R-
module. On the other hand, because R is Artinian, given an arbitrary R-module
N, the module N' = Hompg(N, R) has a natural profinite structure given by N’ =
@Hom r(N;, R), where N; ranges over all finite R-submodules of N. Thus, M ~
MY gives a functor fr — R-mod and N ~ N’ gives a functor R-mod — Bx. This
suggests the following proposition. For technical reasons, we restrict our functors to
topologically flat (equivalently, topologically free) profinite modules Bg top. flat and
flat (equivalently, free) R-modules R-modg,;. (Part (1) of the following proposition
states that these restrictions are respected by the dualizing functors.)

Proposition 2.2.6 (Formal duality). Let R be an Artinian local ring, and let M
be a profinite topologically flat R-module and N a flat R-module.

(1) MV is flat and N' is topologically flat.

(2) There is a natural isomorphism M = (M"V)" and a natural isomorphism N =
(N")Y given in both cases by sending an element of M (resp. N) to evaluation
of maps on that element. As functors between Priop. far ond R-modpy,
M ~ MY and N ~ N' are exact, interchange direct products and direct
sums, and there are natural isomorphisms

MY @ My = (My ® Ma)Y
and
Ni®N, 5 (N @ Ny)'.

(3) The functors (-)V and (-)' are compatible with local Artinian base change.

The proof of Proposition 2.2.6 is straightforward. The reader may again consult
[1, Theorem 1.3.4] for details.

Corollary 2.2.7. Given an Artinian local ring R, there is a duality between com-
mutative affine group schemes over R and commutative formal R-groups.
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Composing with the formalization functor (Proposition 2.1.26(4)), we see that
Cartier duality over R is nothing more than a restriction of the dualization be-
tween affine and formal group schemes over R to a subcategory which is in “the
intersection” of the two.

The duality established in Corollary 2.2.7 will prove to be essential in several
of our constructions, notably in our analysis of the Frobenius and Verschiebung
morphisms in Theorem 3.2.4 below.

2.2.2 Exact sequences

Now that we have constructed formal groups, we will briefly look at the maps
between them. In particular, we will formulate the indispensible notion of an ezact
sequence and check that exact sequences have good properties.

Definition 2.2.8. Given a morphism g : G — H of formal R-groups, we say that g
is injective if ¢* : O(H) — O(QG) is surjective (i.e., g is a “formal closed immersion”);
we say that g is surjective if g* : O(H) — O(G) is topologically faithfully flat. The
kernel of g is defined to be G x ., S (the “formal scheme-theoretic kernel”).

Recall in the case of affine flat algebraic R-groups that G — H is a closed immersion
if the corresponding ring map is surjective, and is called “a quotient map” if the
corresponding ring map is faithfully flat.

It is not always true that ker g is a formal R-group because topological flatness
is not guaranteed by the formation of the formal scheme-theoretic kernel unless
G — H is topologically flat. However, when R is a field, topological flatness is
automatic.

The formation of cokernels is a slighly more complicated affair. We give a brief
sketch. For the sake of simplicity, we only treat the case where R is local, which
suffices for our purposes.

Lemma 2.2.9. Let R be a local pseudocompact ring. A map of flat formal Hopf
R-algebras A — B is topologically faithfully flat if and only if it is injective on the
closed fiber. Similarly, if R is also Artinian then a map of affine Hopf R-algebras is
faithfully flat if and only if it is injective on the closed fiber.

Sketch of proof. By the (formal) fiberwise criterion for faithful flatness, we can as-
sume in the formal case that R is a field k. Writing G = Spf, B and H = Spf}, A4,
we have a map £ : G — H corresponding to A — B. Because k is a field, we can
form the kernel K = ker ¢ in the category of formal k-groups. We see by Yoneda’s
Lemma that G xg G = G x}, K, and therefore we conclude that G x g G is topo-
logically faithfully flat over G by the first projection. The rest of the proof is a
(slightly difficult) exercise in pro-algebra [1, Theorem 2.1.3]. In the affine case, the
proof is much more involved. One uses [7, Theorem 22.3(«)] and the fact that the
maximal ideal of R is nilpotent to reduce to the case where R is a field. For details
when R is a field, see [1, Theorem 2.1.3] (or [13, §§14.1, 14.2] for a more elementary
treatment). O

Lemma 2.2.10. If (R, m, k) is an Artinian local ring, and g : G — H is a morphism
of formal R-groups, then g is a surjection if and only if g¥ : HY — GV is an
injection.
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Proof. Write B = 0(G) and A = O(H). If gV is an injection, then dualizing shows
that the induced map ¢* : A — B is a split injection, hence ¢ is a surjection by
Lemma 2.2.9. On the other hand, suppose ¢ is a surjection, so that ¢* : A — B
is topologically faithfully flat. By compatibility with base change, we see that g :
Ay — By is a topologically faithfully flat map of profinite k-algebras, hence injective.
But every profinite k-module is topologically free, so we can apply Proposition 2.2.6
to conclude that the dual map (g;)" : (Bg)" — (Ag)" is a surjection. By Proposition
2.2.6(3), we see that (%)) : (BY)r — (AY) is surjective. Since m is nilpotent and
AV is flat over R, we see that (¢*)¥ = (¢¥)* is surjective [7, Theorem 7.10], so gV is
an injection of affine R-group schemes. U

Construction. Suppose f : G — H is an injection of commutative formal R-groups.
By Lemma 2.2.10, we may dualize after changing the base to R/t for an open ideal
t C R to yield f%/t : Hl\é/t — G%/t, which is a surjection of affine R/t-group schemes
by Lemma 2.2.9. Since faithful flatness is stable under base change, we may form
the kernel ¢ : Kl\é/r — H}\é/t of f}\é/t in the category of affine R/t-groups. Dualizing
yields a surjection Hg/ — Kpg/ of formal R/v-groups by Lemma 2.2.10. Using
the universal property of the kernel for K}, e (which follows by Yoneda’s Lemma),
we see that the Kp/ form a directed system of formal R-groups (with varying ).
Taking the direct limit yields a formal group scheme K (topologically flat by [1,
Theorem 1.3.12]) and a map 7 : H — K which is topologically faithfully flat (as
this is true over each R/t). The composite G — H — K is zero and G — kerr is
an isomorphism (again working over each R/t). We will call 7 : H — K a cokernel
for f; we will write H/G to denote the cokernel of an injection G — H. O

We note that formation of kernels and cokernels is compatible with base change.

Definition 2.2.11. Given commutative formal R-group schemes G, H, and K, a
complex

,5”:0—>KL>G1>H—>0

is an exact sequence if g is a surjection and f is an injection identifying K with
ker g.

The fundamental reason for Definition 2.2.8 and Definition 2.2.11 is that when
R is a field they make the category of formal R-groups into an abelian category (and
similarly for affine R-groups). We omit the proof [1, Theorem 2.1.4].

In general, we can form the cokernel of a morphism f : H — G if the kernel of
f is topologically flat over R: there is an induced injection f : H/ker f — G, and
we let the cokernel of f be coker f.

Note that by the formal fiberwise criterion for topological (faithful) flatness, a
sequence . is exact if and only if go f = 0 and /g, is exact for all open maximal
ideals m C R. We define longer exact sequences in terms of factorization into short
exact subsequences.

From the construction of cokernels (and considerations on the closed fiber, where
the category is abelian, and Artinian fibers, where we have formal duality), we easily
deduce the following basic fact which allows us to work with exact sequences.
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Theorem 2.2.12. Let R be an Artinian local ring and S an arbitrary pseudocom-
pact local ring.

(1) A diagram 0 - K — G — H — 0 of commutative formal R-groups is short
exact if and only if the dual diagram of affine (flat) commutative R-groups is
short ezact.

(2) If 0 > K - G — H — 0 is a short exact sequence of commutative formal
S-groups and f : G — G’ is a map to a commutative formal S-group which
kills K, then f uniquely factors through G — H.

3 Specializations

The goal of this section is to study the different fibers of a commutative formal group
scheme over a pseudocompact local ring (R, m, k) with positive characteristic closed
point. We first introduce a fundamental tool, the connected-étale sequence, and
carefully construct it. Then we will look at one particular class of connected formal
R-groups, formal Lie groups. Finally, we will exhibit certain morphisms which
only exist in positive characteristic, the Frobenius and Verschiebung morphisms.
These two morphisms will help us relate formal Lie groups to the formal limits of
p-Barsotti-Tate groups in Part II.

3.1 The Connected-Etale Sequence

Over a local pseudocompact base ring (R, m, k), any commutative formal group
scheme fits into a canonical exact sequence

05G">G >G>0,

where G is connected and G is étale. These parts correspond to the connected
component and component group of a Lie group or an algebraic group. As described
below in Theorem 3.1.6, the étale quotient G®' is equivalent to a certain kind of
Gal(ks/k)-module. The connected component G° has a more subtle structure, which
we will only understand in certain special cases.

3.1.1 The étale dictionary

Given a morphism of formal R-schemes f : Spfp B — Spfy A, we can construct the
module of formal differentials Qg A0 which represents the functor taking a profinite
B-module M to the profinite B-module of continuous A-linear derivations B —
Ol _ 1 :
M. Concretely, QB/A = ].(ng(B/b)/(A/a), where ([l,a) ranges over pairs of open
ideals such that (f*)"'(b) D a, and we see that Q}B/A is a profinite B-module.
The properties of the module of differentials familiar from elementary commutative
algebra carry over to the formal category. In particular, the formation of Q}B /A
is compatible with base change on A and base change by an arbitrary continuous
map of pseudocompact rings R — R’, as an easy argument using Yoneda’s Lemma

shows. For psychological reasons, we will write QIT /s for Qg /A when T' = Spf, B
and S = Spfr A.
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Lemma 3.1.1. If f : T = Spfp(B) — Spfip(A) = S is a map of formal schemes
with a section s, then there is a natural isomorphism of profinite A-modules

* def ~ ~ g% def gure
s Q%’/5 = A%’QIT/S =t =1/,

compatible with base change in S, where t; is the formal relative cotangent space
along the section s and I is the augmentation ideal of the section s.

Proof. The proof follows easily from Yoneda’s Lemma once we note that S*QIB /A
represents A-linear continuous derivations from B to B-modules on which B acts
through the augmentation given by s. O

Definition 3.1.2. A map T' — S of formal R-schemes is formally étale if it is
topologically flat and QIT /s = 0.

By functoriality, it is easy to see that the property of being formally étale is stable
under base change on A, pseudocompact base change on R, and that it descends
through topologically faithfully flat base change. When R is a field k, the property
of being formally étale descends through base change by an arbitrary field extension
E'/E.

Lemma 3.1.3. If k is a field and A a profinite k-algebra, then Spf; A is formally
étale over Spfy k if and only if A is a product of finite separable extensions of k.

Proof. By descent along field extensions, we may assume k is algebraically closed.
Because A is profinite, A = [[ A, the product taken over all open maximal ideals
of A, so we may assume A is local by functoriality. We are then done by Lemma
3.1.1 and the Formal Nakayama’s Lemma. O

Proposition 3.1.4. If G is a topologically flat formal scheme over R, then G is
formally étale over R if and only if the (formal) closed fiber of G is formally étale
over k.

Proof. By functoriality, Qle k= QlG /A ®4 k, and this is the zero module if and only

if Q}; /A= 0 by the Formal Nakayama’s Lemma (because Q}; /A is also a profinite
A-module). O

Recall that pseudocompact local rings are Henselian (Lemma 2.1.20). In the
theory of schemes, it is natural to think of Henselian local rings as analytic neigh-
borhoods of their closed points. The same intuition carries over into the formal
category. Fix a local pseudocompact ring (R, m, k) and fix a separable closure ks of
k. In the case of ordinary schemes over a Henselian local base (R, m, k), the closed
fiber functor establishes an equivalence of categories between finite étale R-schemes
and finite étale k-schemes, which are in turn identified with finite sets with a contin-
uous action of the Galois group Gal(ks/k). A similar fact is true for formally étale
formal R-schemes.

Proposition 3.1.5. The closed fiber functor establishes an equivalence of categories
between formally étale formal R-schemes G and formally étale formal k-schemes Gy.
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Proof. Because the property of being formally étale is stable under base change, if
G is formally étale over R then Gy, is formally étale over k. Conversely, given some
formally étale Gy over k, write G, = Spfy([[;c; ki), where k; is a finite separable
extension of k. Let A; = R[z]/(fi(z)), where f; is any (monic) lift of the minimal
polynomial for a primitive element «; for k;/k. It is easy to see that A; is finite
free (hence profinite topologically flat) and local, and that the residue field of A; is
precisely k;. Thus, G = Spf, (][] 4;) is a formally étale lift of G, to R by Proposition
3.1.4.

It remains to check that this lift is unique up to unique isomorphism. If G’ is
another lift, then by the Formal Nayakama’s Lemma and the fact that k;/k is finite
for all i € I, G' must have the form Spf (]];; B;) for finite local R-algebras B;. But
then B; is a finite local algebra over a Henselian local ring, so B; is itself Henselian.
Furthermore, f; has a root «; in the residue field k; of B;, so by Hensel’s Lemma
there is a unique R-algebra map ¢; : A; — B; lifting the residue field identification.
Since B; is topologically flat and the induced map ¢; ® k is an isomorphism, we see
that ¢; is an isomorphism. O

Let /ék be the category of formally étale formal k-schemes and /S\k the category
of discrete sets admitting a continuous ¥-action, where ¥ = Gal(ks/k).

Theorem 3.1.6. There is an equivalence of categories gk — /S\k defined by

(3.1.1) G~ G(ks) = i 7k, Lk <0G (L)
Over an algebraically closed field, the category of formally étale formal k-schemes is
equivalent to the category of sets.

Proof. For a formally étale formal k-scheme G and ks endowed with the discrete
topology,

(3-1-2) Homk—alg., cont (ﬁGa ks) = ligﬂHOInk—alg., cont (ﬁGa L)

as L ranges over finite Galois subextensions of ks /k. The transition maps in (3.1.2)
are clearly maps of sets functorial in G which respect the functorial 4-action induced
by the action on ks (and all of its finite normal subextensions), and any point in
the limit is fixed by an open subgroup of 4. Thus, G ~ G(ks) determines a functor
Ek — /S\k

On the other hand, suppose H is a discrete set with a continuous ¥-action. Let
I be the set of orbits under the ¥-action. For each ¢ € I, continuity ensures that
7 is finite and stabilized by an open subgroup .4, C 4. Let k; C ks be the fixed
field of 7 and let Ay = [[;c; ki. We see that Spfy Ay is a formally étale formal
k-scheme such that (Spf, Ag)(ks) = H as ¥-sets. It is not difficult to see that
Spfy, A,y = O(G), so we have defined a quasi-inverse functor to G ~ G(ks). 0O

By universal properties, we see that the equivalence in Theorem 3.1.6 takes prod-
ucts to products and therefore takes (commutative) group objects to (commutative)
group objects.

Theorem 3.1.6 is the “étale dictionary” which may be used to reduce questions
about étale group schemes to questions about groups in the category of sets. We
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will use this dictionary to translate between commutative formal groups over fields
of characteristic zero and Galois modules. We remind the reader that a similar
dictionary exists between finite étale R-schemes and finite discrete ¢-sets with a
continuous action.

3.1.2 Connected components and the connected-étale sequence

Fix a local pseudocompact ring (R, m, k).

Definition 3.1.7. Given a formal R-group G with identity section factoring through
O(Q)m, the connected component of G, denoted G°, is Spf(0(G)wm).

Proposition 3.1.8. The connected component G° is a closed sub-formal R-group.
If R — R’ is a local pseudocompact base change, then (GO)p = (Gr)°. In particu-
lar, (Go)k = (Gk))o

Proof. The first statement follows by restricting G to small points and using the
pseudocompactness of the factor rings in the canonical decomposition of &(G). The
second statement follows because the closed point of G is k-rational. O

We can now construct the connected-étale sequence.

Proposition 3.1.9. If G is a commutative formal group over R, the quotient G =
G/G° is formally étale over R.

Proof. By Proposition 3.1.4 and Proposition 3.1.8, we may assume the base R is a
field k, and by descent along field extensions we may assume that k is algebraically
closed. By an elementary translation argument, because k is algebraically closed we
see that every factor ring of ¢(G/GP) is isomorphic. Thus, by functoriality and the
Formal Nakayama’s Lemma, if we can show that 6*@2(0/@)% = 0 then we will be

done. If I is the augmentation ideal of &(G/GY), it suffices (by Lemma 3.1.1) to
show that /12 = 0. Writing €(G) = A x 6(G°), we see that I0(G) = A x {0},
so I0(G) = I20(Q), and therefore (I/12) @)ﬁ(g/go) 0(G) = 0. By the topological
faithful flatness of G — G/G°, we are done. O

Proposition 3.1.10. The connected-étale sequence is functorial, i.e., a morphism
¢ : G — H uniquely fits into a commutative diagram

0 > 0 > G > (76t >0

Ll

0 > ;O > H > F¢t > 0.

Proof. This immediately follows from the fact that restricting to small points is
functorial with respect to morphisms of formal groups, along with the cokernel
property for the étale quotient G¢* (by Theorem 2.2.12(2)). O

Proposition 3.1.11. If R = K is a perfect field, then the connected-étale sequence
for G uniquely splits as a sequence of formal groups.

26



Proof. Suppose A is a local profinite K-algebra. Because A is profinite and K is
perfect, the residue field L of A is a finite separable extension of K. Fixing a choice
of primitive element « for L/K and lifting the minimal polynomial f of « to the
unique pre-image in A[x] with coefficients in K, we see that there is a unique lift of «
to a root of f in A because A is Henselian, and therefore the residue map A — L has
a unique section (in the category of K-algebras). This implies that for each local
factor A; of €(G), we can find a unique K-subalgebra isomorphic to the residue
field L; of A;. Furthermore, any formally étale subalgebra B of A; is clearly a finite
(separable) field extension of K (by Lemma 3.1.3), and hence it is easy to see that B
must map injectively into the residue field L; of A; under the canonical quotient map
A; — L;. We therefore conclude that B C L; by uniqueness, so L; is the mazimal
formally étale subalgebra of A;. By applying this argument to the local factors of
arbitrary profinite K-algebras, we see that every profinite K-algebra possesses a
maximal formally étale subalgebra (containing all others) and that maps between
profinite K-algebras induce maps between the maximal formally étale subalgebras.

Because K is perfect, L; @ L; is identified with a formally étale subalgebra
of A; ®x A; under the canonical injection L; Qg L; — A; Rk Aj. On the other
hand, any open maximal ideal of 4; ®x Aj must contain m; C A; — A; QK Aj and
m; CAj — A; ®K A; (under the canonical injections), so we see that the quotient of
A ®k A; by its ideal of topological nilpotents is a quotient of L; Rk L;. We conclude
that L; ®x L; must be the maximal formally étale subalgebra of A; @)Aj. By the
obvious generalization of this argument, we see that the formal comultiplication and
antipode on ¢'(G) induce compatible Hopf maps on [[ L;. We conclude that [] L;
is canonically a formal Hopf subalgebra of &(G), and it is easy to see that &(G) is
topologically faithfully flat over [] L;. The induced surjection G — Spf(]] L;) has
kernel GO, and therefore we have explicitly realized the map G — G®. Finally, it
is easy to see that the product of the reduction maps [[ A; — [] L; gives a map of
formal Hopf algebras which is a section to G — G¢. Since Hom(G*®, G?) = 0, this is
the unique splitting of the connected-étale sequence by a map of formal groups. O

As an application of the splitting of the connected-étale sequence, we prove a
proposition relating short exact sequences of commutative formal groups with short
exact sequences of commutative finite group schemes. This will help us to study the
formal limits of p-Barsotti-Tate groups in Theorem 6.1.3 below.

Proposition 3.1.12. Let R be a pseudocompact ring. If G', G, and G" are formal
R-groups such that G' and G" are finite free of constant ranks d' and d" respectively
and there is an exact sequence

0-G -G—-G" =0

of formal R-groups, then G is finite free of rank d'd".

Remark 3.1.13. Note that by Proposition 2.1.12, finite locally free profinite R-
modules of constant rank must be globally free. ¢

Proof. Because the ranks of G’ and G" are constant over R, we may reduce to
the case where R is local. By a standard topological flatness argument, we may

27



further reduce to the case where R = k is a field, and it is easy to see that we may
take k£ to be algebraically closed. In this case, the connected-étale sequences split.
By functoriality, we need only prove the Proposition when the three groups are all
connected or all formally étale. In the formally étale case, the proof is trivial by
the étale dictionary. Suppose G', G, and G” are all connected. We easily see by
the Formal Nakayama’s Lemma that &(G") — €(G) is finite, so we are done by
Proposition 2.1.18 and the usual multiplicativity of orders in short exact sequences
of finite locally free group schemes. O

Remark 3.1.14. The usefulness of exact sequences of formal groups necessitates that
we work in the general category of pseudocompact rings. Indeed, the étale quotient
of a formal group could easily be the constant group Q,/Z, (we will see many

examples in Part II; even over Z,, the profinite algebra of Q,/Z, is highly non-
Noetherian.) ¢

3.2 The Special Fiber

Over a field k of positive characteristic a great amount of new information about a
formal k-group G is encoded in a diagram

(3.2.1) G —5 )

UK

G—— G,

where F' is the Frobenius morphism and V is the dual Verschiebung morphism. We
will now define and study these group morphisms.

3.2.1 Frobenius and Verschiebung

Throughout this section, k& will be a field of characteristic p > 0.

Given an F-algebra A, the map A — A given by = — «? is called the absolute
Frobenius morphism of A and denoted Fjy; if A is pseudocompact, we see that F'y
is continuous. Given an A-algebra B, let B(®") denote the base change by F1.
Likewise, if A is pseudocompact and B is a profinite A-algebra, define B®") =
B® Arr A, This is a profinite A-algebra, but it is important to note that F4 need
not make A a profinite algebra over itself (e.g., consider a field k£ with [k : kP] = c0).
We will also write (Spf, B)®") & Spf ,(B®")) and similarly in the affine case. By
the universal property of (completed) tensor products, we may make the following
definition.

Definition 3.2.1. Let B be a (profinite) A-algebra (with A pseudocompact in the
formal case). There is a unique map of (profinite) A-algebras F /A B®) — B, the
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relative Frobenius of B over A, such that the diagram

commutes. Concretely, FE/A is given on elements of the form b ® a by FE/A(b ®a) =
bPa.

We see from the universal properties of base change and from uniqueness that
the relative Frobenius of B over A is compatible with base change (to another
pseudocompact ring over A) and with the formation of products, and therefore
when Spf 4 B is a formal A-group or Spec B is an affine group scheme over Spec A,
the relative Frobenius is a group morphism.

Remark 3.2.2. The usual construction of the relative Frobenius for schemes can be
given in geometric form, unlike the construction we give in Definition 3.2.1. In the
formal case, the possibility that F4 : A — A might not be a “pro-finite” algebra
map forces us to use the ring-theoretic version in the category of pseudocompact
rings. Having made the construction, we see that F'j /A is in fact a continuous map
of profinite A-algebras, and therefore we may restate the result: Given a formal
A-scheme X, the relative Frobenius gives a morphism Fy gpr, 4 @ X — x®) of
formal A-schemes, compatible with base change on A. When X is a formal A-group,
Fx/spt, A 1s a group morphism. ¢

If A is a local Artinian ring, employing the duality of Corollary 2.2.7 and the
duality built into Definition 3.2.1 allows us to define the relative Verschiebung:

Definition 3.2.3. Given a formal or affine (topologically) flat A-scheme Y, the
relative Verschiebung Vy 4 : Y(®) — Y is the dual to the relative Frobenius.

We will drop the “relative” in what follows, using only the words “Frobenius” and
“Verschiebung.” When the base is understood, we also omit it from the notation
and write simply Fx, or even F, if everything else is clear. We may inductively
define the base changes X" the nth relative Frobenius F" : ¥ — X®"), and the
nth relative Verschibung V" : ") — %.

In the case where the base ring is a field &k of characteristic p, we will now prove
that (3.2.1) above is a commutative diagram. This will allow us to analyze the
multiplication-by-p map [p] using the F and V maps. In particular, both F' and
V can be written somewhat explicitly, and this will help us greatly in Part II. In
fact, it is by finding a concrete expression for V that we will prove the following
basic theorem relating F and V. The proof we give here is taken from [1]; it makes
essential use of the duality between affine and formal k-groups.

Theorem 3.2.4. If G is a formal or affine commutative group scheme over a field
k of positive characteristic p, then F oV = [plaw and V o F = [plq.
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We see from the compatibility properties of the Frobenius that it suffices to prove
Theorem 3.2.4 when k is perfect. Therefore, for the rest of this section, we assume
k is perfect; this will help us because the absolute Frobenius ¢ : kK — k becomes
an automorphism. It should be noted, however, that the statement of the theorem
does not require a perfect base field.

Let W be a k-vector space. Let T'S?(W) be the fixed points of W®7 under the
action of the symmetric group S; on the tensor factors (for j = 0, take TWO(W) =
k). Call TS7(W) the symmetric j-tensors. Define a linear map %; : W®" —
TSI (W) by

Wiy @ QWi > Y Wiy B B W)
o€S;
Our constructions are clearly functorial in W and are therefore stable under passage
to the direct limit.

Lemma 3.2.5. Every symmetric p-tensor v € T'SP(W) can be uniquely written in
the form v = w®P +t, where t € L,(W®P) and w € W.

Proof. Tt suffices to prove the Lemma for finite-dimensional W; the general result
follows by passage to the direct limit. Looking at orbits for the action of Sj, it is
not too hard to see that

] . -
(W @ Wy)®7) = P (Zw P @ 55w 077)
1=0

inside of W®J. There is a compatible isomorphism

J
TSI (W & Wa) = @) (TS (Wh) @ TS~/ (Wa)) .
=0

For 0 < j <p—1, it is clear that ¥; is an isomorphism and therefore

TSP(Wy & Ws) ~ TSP(Wy)  TSP(Ws)
Ep(Wl o) W2)®P - EpW1®p EpW2®p .

Using induction on dimy W < o0, it follows that the k-linear map
W®) 5 TSP(W) /S, (WEP) : A@ w > Aw®P
is an isomorphism. Because k is perfect, the Lemma is proven. O

If W is a profinite k-module, there is a unique continuous action of S; on Wi

determined by
W R RWj = Wo(1) B+ ® W)

Define the profinite k-module T'S’ (W) to be the fixed points for continuous k-linear
action (it is profinite because it is closed). As above, call T.S7(W) the symmetric
J-tensors. The map X, of Lemma 3.2.5 extends by continuity to give a continuous
linear map of profinite k-modules W&J — TSI (W). The profinite analogue of
Lemma 3.2.5 is the following:
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Lemma 3.2.6. IfW is a profinite k-module, any element v € TSI (W) has a unique
expression as v = w®P +t, where t € Zj(W®j) and w € W. Moreover, w and t are
continuous functions of v.

Proof. 1t suffices to show that the continuous linear map of profinite k-modules
dw WP = TSP(W) /S, WEP

determined by A@w Aw®? s bijective. Note that 1 is functorial in W. If U
ranges over a base of open subspaces of W, it is easy to see that

URWR - - QW+WRUIWR--- QW+ +WR--- WU

ranges over a cofinal system of open subspaces of Wi, By the definition of ¥, it
is not hard to see that the functors W ~» W) and W ~» TS”(W)/EI,W@”’ and the
natural transformation )y are compatible with inverse limits. (The key to showing
this for W ~» TS”(W)/ZPW@’Z’ is the right-exactness of lim on profinite k-modules.)

Thus, we are reduced to the case where dim; W < oo, and we are done by Lemma
3.2.5. 0

Proof of Theorem 3.2.4. We will prove the result in the formal case; the affine case
follows by duality. Let A = €/(G). Writing [p] = m,A,, where m,, : GP — G is the
p-fold multiplication and A, is the p-fold diagonal map, Lemma 3.2.6 shows that
the map mj : A — A®P on k-algebras has the property that for any a € A,

(3.2.2) mi(a) = V(a)®? + ¢

for some unique V' (a), continuous in a, and some t € ZP(A®p). (The map m,, takes
symmetric values because the multiplication is commutative.) It is easy to see that
for ¢ in the dense submodule of 3,(A®?) given by finite sums of elementary tensors,
A3(t) = 0 because pA = 0. By continuity and density, we therefore see that

Obviously, V is our candidate for the Verschiebung morphism. By uniqueness, it is
clear that V : A — A is a continuous ring map which is semilinear with respect to
the inverse of the absolute Frobenius of k (i.e., V(Xa) = APV (a)), and therefore
(by base change by the absolute Frobenius ¢ of k) it defines a continuous k-algebra
map V, : A — AP We claim that Vi, = V¢ (In the remainder of this proof, we
will let the subscript ¢ denote base change by the absolute Frobenius of £.) This
will conclude the proof that Fgo Vg = [p]. Since the pth-power map commutes with
any ring homomorphism, we can also conclude that Vi o Fi = [p].
To verify that V, = V%, we will use linear algebra. Let

(«,): A®AY = k

denote the canonical pairing, and let the base change by the absolute Frobenius
be denoted by (-, -),. Recall that the k-algebra structure on the (discrete dual)
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AV comes from the formal Hopf structure on A. With this in mind, we see by the
definition of the Verschiebung that for all @ € A (topologically identified with A®)
by a — 1 ® a because k is perfect) and all ¢ € AV,

(Vé(a), vp)p = (a, Finv (1)) = (my(a), p°7)

the last pairing taking place between A®P and (AY)®P. But any element of Ep(A®p )
pairs to zero with ¢®? because ¢)®? clearly pairs to zero with a dense submodule
of ¥,(A®P) (as chark = p). By (3.2.2),

(mp(a), $27) = (V(a)P,477) = (V/(a), $) = (Vio(0), ) -

Because k is perfect, all elements of (AY), have the form ,. Because the pairing
(-, )y is perfect, we conclude that V,(a) = Vi(a) for all a € A, so V,, = V. O

As a consequence of Theorem 3.2.4, we can prove a basic fact about connected
formal groups in characteristic p > 0.

Proposition 3.2.7. If G is a connected commutative formal group over a field k of
characteristic p > 0, then the natural injection of formal groups

£ Im G - G
s an isomorphism.

Proof. By Yoneda’s Lemma and the right-exactness of l<in on the category of short
exact sequences of profinite k-modules, £ is easily seen to exist and be a formal
closed immersion. If we can show that every point of G is annihilated by p™ for
some n, we will be done. Because any Artinian k-algebra breaks up into finitely
many local factors, we easily reduce to the case of a local (Artinian) point of G.
Let R be a finite local Artinian k-algebra. Since the maximal ideal m of R
is nilpotent, we may choose n such that m?" = 0, and therefore the nth relative
Frobenius Ff% : G — G(*") kills G(R) because G is connected. Since VZoF% = [p"]g
by induction, we are done. U

Corollary 3.2.8. If A is a pseudocompact local ring with residue characteristic
p > 0 and G is a connected commutative formal group scheme over A such that
[p] : G — G is topologically flat, then the natural map of formal groups

§:limGp"] — G
18 an isomorphism.

Remark 3.2.9. By Proposition 2.1.19, ligG[p"] is topologically flat over A. ¢

Proof. This follows from Proposition 3.2.7 by a standard argument using the Formal
Nakayama’s Lemma along with the fact that lim G [p"] and G are topologically flat
over A. (It is possible to prove this result when G' and the map [p] : G — G are not
assumed to be topologically flat, but we will not need it, and the proof is somewhat
involved: one proceeds by reducing the problem to the case where A is Artinian and
then inducting on the length of A, using Proposition 3.2.7 to handle the case where
A is a field.) O
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Remark 3.2.10. The proof of Corollary 3.2.8 shows that analyzing the closed fiber
of G using F' and V can yield non-trivial results, even over a base which is not
of characteristic p. In Part II we will use the closed fiber to show that formal
groups constructed from certain p-Barsotti-Tate groups are formally smooth, i.e.,
are “formal Lie groups.” ¢

3.2.2 The structure of connected finite group schemes

Since connected groups over a perfect field of characteristic p > 0 are easier to
understand than connected groups over an arbitrary local ring (or even an arbitrary
field), the following theorem is another illustration of the use of passage to the closed
fiber. We will not prove it here, as it is a well-known result [13, §11.3].

Theorem 3.2.11. If k is a perfect field of characteristic p > 0 and G is a finite
(not necessarily commutative) connected finite group scheme over k, then O(G) has
the form k[zi,... ,xn]/(xfml) for some integers m; > 0. In particular, if k has
characteristic 0 then all finite (not necessarily commutative) group schemes over k
are étale and if k is an arbitrary field of characteristic p > 0, then every finite
connected k-group scheme has p-power order.

3.3 Smoothness and Formal Lie Groups

Let (A,m,k) be a pseudocompact local ring. For our purposes, we will say that
a connected formal A-scheme X with a k-rational closed point is formally smooth
(over A) if there is an isomorphism /(X)) =2 A[{X;}] for some collection of indeter-
minates. (See [1] for a more functorial definition and a proof of the equivalence with
the definition given here.) If {X;} is finite, we call |{X;}| the (relative) dimension
of X and write dim X. When {X;} is infinite, we will write dim X = co. It is clear
that dim X = dimy m/ﬁ, so the dimension is intrinsic to X. In our study of formal
limits of connected p-Barsotti-Tate groups in Part II, an analysis of the closed fiber
of such a limit will reveal it to be formally smooth of finite relative dimension on
the gometric closed fiber. We therefore provide a useful mechanism for descending
this information over the closed fiber and lifting it to the entire formal group.

Proposition 3.3.1. Let k'/k be an extension of the residue field of A. If B is a
topologically flat local profinite A-algebra with residue field k, then B is formally
smooth over A if and only if B& k' is formally smooth over k'.

Proof. The ‘only if’ direction is trivial. Now suppose that B ® 4 k’ is formally smooth
over k'. If we can show that B &4 k is formally smooth over k, then we can lift the
isomorphism k[{X;}] = B®4k to a continuous map of topologically flat profinite
A-algebras A[{X;}] — B, and we will be done by a standard Formal Nakayama’s
Lemma argument. Thus, we may assume A = k and that B &, &' is formally smooth
over k', and we wish to show that this property descends over k. We prove this in
the special case where dim Spf;, (B ®; k') is finite. The proof in general is in [1]; the
finite-dimensional case is all that we need, so we give a simpler proof for that case
(which, unfortunately, does not easily generalize).
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Let n be the (open) maximal ideal of B. By faithful flatness, n/n? is a finite-
dimensional k-vector space. Lifting a basis gives a continuous surjection

E[X1,...,Xn] - B

for some X;. To show this is an isomorphism, we may extend scalars to k', which
yields a surjection

ETX1,..., Xn] » BRK 2 K[Y,..., Y]
k
But any surjective self-map of a Noetherian ring must be an isomorphism. O

Definition 3.3.2. A formal Lie group over A is a connected formally smooth formal
group over A.

Example 3.3.3. The formal multiplicative group G,, is represented by A[X], so
it is a formal Lie group. Similarly, the formal additive group Ga is a formal Lie
group. If G is a smooth algebraic k-group scheme of dimension n, Example 2.2.2
shows that the formal completion G of G at the identity is a formal Lie group of
dimension n (commutative if G is). O

Remark 3.3.4. It is trivial to check that for any formal Lie group, the comultipli-
cation map A[{X;}] — A[{Y;, Z:}] (with Y; = 1®4 X; and Z; = X;®4 1) sends
X; to Y; + Z; modulo terms of degree two and higher. This simple observation will
become important later (cf. Theorem B.2.3). ¢

4 Discriminants

In general, a map f : G — H between finite group schemes over a mixed character-
istic discrete valuation ring R with fraction field K need not be an isomorphism if
fx is an isomorphism. (For example, consider R = Z,[(], G = Z/pZ, and H = p,,
with f(1) = (,.) When fx is an isomorphism (so f* is injective by R-flatness), the
failure of the lattice injection f*: &(H) — €'(G) to be an isomorphism is measured
by failure of the (non-zero) discriminant ideals discs()/r,discs(qy/r C R to co-
incide (they are non-zero because the generic point has characteristic zero, so Gx
and Hy are étale over K). In studying the analogous question for p-Barsotti-Tate
groups, Tate was able to use invariant differentials on formal Lie groups to compute
the discriminant ideals of the finite stages of p-Barsotti-Tate groups. This analysis,
which we present in Part II, uses several basic properties of discriminants, which
we now review. We will conclude this section with the calculation of discriminant
ideals for certain isogenies of formal Lie groups; this calculation will be essential in
Section 6.2.2.

4.1 A Geometric Construction

Given a finite locally free morphism of schemes f : T'— S of constant rank d (e.g.,
a finite locally free S-group), we may define a trace form Try/g : f.01 — Ofs.
Using the Og-structure on f,Or, we get a bilinear pairing f.01 Qg f+ O — Os.
This induces a natural pairing A%f, Op R0 AN f.Op — Og whose image is a locally
principal ideal sheaf on S called the discriminant and denoted discy)s.
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Example 4.1.1. If f is étale (which in this case just adds the hypothesis that the
Or-module Q%F ¢ vanishes), then we see by computing in the fibers that discy/g =
Og. If S is a Dedekind scheme, what we have constructed is precisely the discrimi-
nant of classical number theory. O

The closed subscheme determined by the discriminant is just the locus of points
over which the trace form on the fiber is degenerate. A better measure of such
degeneracy would be provided by some analogue of the different of classical number
theory, which would indicate points of T' where the structure map is “ramified”
rather than just the fibers which contain the ramification points. When the fibers
of f are Gorenstein, such a different may in fact be defined (see Section 4.3 for a
treatment of the formal case).

In the same way that we defined the trace, we may define the norm Nz,q :
f«Or — Os. In particular, if % C f,0g is a locally principal ideal sheaf, then
we may define the locally principal ideal sheaf Ny g(.#) in Os. If X — T — S is
a tower of finite locally free morphisms of constant rank, it follows from Theorem
4.2.1 below that

(4.1.1) discy/s = Ny (discxr) disc;‘f/TSX

This extends the transitivity of discriminants from classical number theory to a
much more general situation.

To verify (4.1.1), it clearly suffices to work locally over S, so we need only prove
(4.1.1) when S = Spec A is a local scheme. Because X — T and T' — S are finite,
localizing the base reduces us to the affine case, where S = Spec A, T' = Spec B, and
X = SpecC. In the affine case, (4.1.1) just says that transitivity of discriminants
holds for a tower of finite locally free ring extensions. This purely algebraic point
of view will make things slightly clearer when we treat discriminants of isogenies
between formal Lie groups.

4.2 Transitivity of the Discriminant

Theorem 4.2.1. If A - B — C is a tower of finite locally free free ring extensions
of constant ranks tkp C = r and tka B = £, then discc 4 = Np/a(disce/p) disc’];./A
as ideals of A.

Proof. Tt suffices to prove this after localizing A, in which case it is an easy exercise
in commutative algebra that A — B and B — C must be free. Note that the
transitivity of the trace shows that the trace form C®4 C' — A is the composite

Tra/s(+,-) Trp/a

B A.

cCC—-0C
A B

Therefore, we may consider the problem in a slightly more general form: let A — B
be a finite free ring extension and M a non-zero finite free module over B of rank r
equipped with a bilinear pairing B : M ® g M — B. A new pairing B’ : M @ M —
A results by composing B with Trp,4. We want to prove that

disc(B') = N/ a(disc(B)) disc -
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Using the adjointness of Hom and ®, B corresponds to a B-linear map
M — Homp(M, B),

both sides of which are free of rank r over B. Furthermore, choosing a basis
€e1,...,e for M (and its dual for Homp(M, B)), it is easy to see that the induced
map on top exterior powers is just multiplication by disc(2B) up to a unit of B.
Rephrasing the problem in these terms, consider the sequence

(4.2.1) M — Homp(M,B) — Homs (M, B) — Hom (M, A),

where the second map comes from the forgetful functor from B-modules to A-
modules and the third map is composition with the trace from B to A. An easy
computation shows that

rkq M = rf = rky Hompg(M, B) = rky Hom 4 (M, A),

while
ks Hom (M, B) = rf2.

Exterior powers over B and over A commute in the sense that for a free B module
N of rank r, there is a natural isomorphism

(4.2.2) AEN = AY (A N).

For the first map in (4.2.1), the top exterior B-power is multiplication by disc(8) (up
to a unit of B). Thus, by the isomorphism (4.2.2) and the definition of the norm, the
top exterior A-power of this map is just multiplication by N, 4 (discy; ). Choosing
a B-basis for M, the last part of diagram (4.2.1) becomes

B" — Hom (B, B)" — Homy (B, A)",

which is naturally just the direct sum of r copies of the map B — Homu4 (B, A)
corresponding to the trace form on B. Hence, using the basic relations between
exterior powers and direct sum, the induced map on top exterior powers is just
multiplication by a generator of disc, /A" The composition of both pieces of (4.2.1)
yields the result. U

4.3 The Gorenstein condition and isogenies of formal Lie groups
Let f:T — S be a finite locally free morphism of schemes.

Definition 4.3.1. We say that T is Gorenstein over S or satifies the relative S-
Gorenstein condition (is S-Gorenstein) if Homeg,(f«Or, Os) is a locally free f.Op-
module of rank one.

Note that because f is locally free, given any base change S’ — S, if T is S-
Gorenstein then T' x g S’ is S’-Gorenstein; similarly, we see that T is S-Gorenstein
if and only if T' x g Spec k(s) is Spec k(s)-Gorenstein for all s € S, i.e., the property
holds if and only if it holds in every (geometric) fiber. It is also clear that if 7' and
T’ are S-Gorenstein, then T' x g T" is S-Gorenstein. When S is local, it suffices to
check the S-Gorenstein condition on the closed fiber.
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Remark 4.3.2. Let us consider the affine case for a moment. Because f is finite, by
lim considerations we may immediately reduce to the case where Spec B — Spec A
is a finite locally free morphism of Noetherian affine schemes. We claim that if
A is a Gorenstein ring, then Spec B is Spec A-Gorenstein if and only if B is a
Gorenstein ring. To see this, we can further reduce to the case where A is local by
the definition of Gorenstein rings. Now, by freeness, any A-regular sequence is a
B-regular sequence (considering A as a subring of B by way of the structure map),
so we may again reduce to the case where A is Artinian. But then B breaks up
as a product of finite free local A-algebras, and therefore we are reduced to the
case where (A,my,kys) — (B,mp,kp) is a finite free map of local Artinian rings.
Let FE signify injective hull. By the basic theory of duality for Artinian rings, we
see that a local Artinian ring (A, m, k) is Gorenstein if and only if A =2 E4(ka).
By the uniqueness of dualizing functors (for finite modules over an Artinian local
ring), there is a B-module isomorphism Homy (B, E4(k4)) = Ep(kp). But then,
since A is Gorenstein, F4(k4) = A, so Ep(kp) = Homa(B, A) as B-modules. This
completes the proof. ¢

Remark 4.3.3. Using Remark 4.3.2, we may prove that a finite (not necessarily
commutative) group scheme 7' — S is S-Gorenstein. Indeed, we reduce to the case
where S = Spec k for some algebraically closed field k. Using translation arguments
(because k is algebraically closed), we reduce to a consideration of connected group
schemes. By the structure theorem for finite connected group schemes (Theorem
3.2.11), we are done. ¢

Definition 4.3.4. If T is S-Gorenstein then the f,&r-annihilator of

Homeg(f«Or, Os)[(Trr)s)

is a locally principal ideal sheaf d/g C f.Or called the different of T over S. We
view the different as a quasi-coherent ideal sheaf on T

When S is a Dedekind scheme, its local rings are discrete valuation rings, hence
are Gorenstein. Thus, T is S-Gorenstein if and only if the local rings of T' are
Gorenstein rings by Remark 4.3.2. In particular, if 7" is also a Dedekind scheme,
we see that T' is S-Gorenstein and the different 67/ corresponds to the different of
classical number theory.

Lemma 4.3.5. If T is S-Gorenstein, then

Nyys(07/s) = diserys
as ideals in Og.

Proof. We immediately reduce to the case where S = Spec A for a local ring and
T = Spec B for a finite free extension ring. Let eq,... ,e, be an ordered basis for
B over A. Letting m; : B — A be the projection to the jth summand of B, we
see that Np/4(0p/a) = det(m;j(dp/aei)). On the other hand, if A is a B-basis for
Homy (B, A), so Trg/q = dp/a) (where dp/4 generates the different ideal of B),
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then m; = ;A implies

mi(0pyaci) = Najdp/ae:)

= AMdpjacje;)

= Trp;a(aje;).
It is clear that «aq,... ,a, is another A-basis for B, so there is an invertible matrix
M with Me; = aj. Thus, (Trp a(aje;)) = M(Trp/a(eje;)). Taking determinants
shows that N 4(0p/4) = udet(Trp 4 (eie;)) for some u € A*. O

We now wish to apply these ideas to formal groups.

4.3.1 Discriminants of isogenies of formal Lie groups

Fix a pseudocompact local base ring R. Let G and H be two (finite-dimensional)
formal Lie groups over R.

Definition 4.3.6. An isogeny ¢ : G — H is a topologically faithfully flat morphism
of formal groups with a finite kernel (which is topologically flat over R by base
change, hence finite free because R is local). The order of the kernel is called the
degree of ¢.

Example 4.3.7. For Noetherian R, let A be an abelian scheme of relative dimen-
sion g over R and A the completed local ring at the closed identity point (viewed
as the formal completion of A as a formal R-group). Multiplication by N > 1 on A
is an isogeny of degree equal to the order of &/[N]°. O

We will show that the different of an isogeny f : G — H of commutative formal
Lie groups parametrizes the points of G where f is not (formally) étale. In Corollary
4.3.11, we will need some results about the module of formal differentials of a formal
R-group. We develop the theory (with proofs) in Appendix A. However, without
the theory at hand, it is difficult to even accurately state the results which we will
use. The reader is advised to read the relevant statements from Appendix A when
reading the proof of Corollary 4.3.11; if time permits, it is ideal to read the entire
appendix, as the ideas developed there are essential for understanding the classical
motivation behind Tate’s proof of the Isogeny Theorem (Theorem 7.2.1).

Lemma 4.3.8. If ¢ : G — H is an isogeny of formal groups over R, then the
induced map ¢* : O(H) — O(G) is finite free of rank deg ¢ and ¢ is Gorenstein. If
G and H are formal Lie groups, then dim H = dimG.

Proof. We see by topological flatness considerations that it suffices to prove the
Lemma after changing the base to the residue field £ of R. The map (¢,g9) —
(£g~',g) on the level of points shows that there is an isomorphism

(4.3.1) kerp x, G = G xyg G

which is compatible with the second projection maps. Since ker ¢ is finite free over
k, we conclude that ps : G Xy G — G (which is just the base change of ¢ by G over
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H) is a finite topologically faithfully flat map with constant rank. By Proposition
2.1.29, we see that ¢* is finite free.

Similarly, (4.3.1) shows that Hom gz (0(G), O(H)) is locally free of rank one
over 0(G) if and only if Homgq) (0 (ker ¢) &, O(G), 0(Q)) is locally free of rank
one over @ (ker ¢) ®;, €(G), and this holds if and only if Homg (& (ker ¢), R) is locally
free of rank one over & (ker ¢). But we showed in Remark 4.3.3 that this is the case,
and therefore ¢ is Gorenstein.

When G and H are formal Lie groups over R, the dimension result follows from
finiteness of ¢* [7, Theorem 15.1(i)]. O

Tate’s calculation of the discriminants of isogenies rests upon considerations of
invariant differentials. The following theorem provides the first link in a chain of
results culminating in Tate’s calculation, which appears as Corollary 4.3.11.

Theorem 4.3.9. Let O be a ring, and 0' = O[Ty,... ,T,]/(f1,..., fn) for some
reqular sequence f1,...,fn in O[Ty,... ,T,]. If €' is finite and free over O, then
there is an O'-linear isomorphism

Homg (0", 0) ~ 0"

such that of
[
T‘I’ﬁ//ﬁ — det <8TJ> .
Thus,
. afi /
(5@//@ = det <8TJ> ﬁ .

We will give the most important consequences of Theorem 4.3.9 before we give
the proof.

Let G and H be formal Lie groups of dimension n over a pseudocompact local
ring R and suppose ¢ : H — @ is an isogeny. There is an induced map of invertible
O (H )-modules @b*(QZ/R) — Q- The annihilator of the cokernel is a principal
ideal in @(H), denoted (a).

Corollary 4.3.10. In this situation, discq/g = Ng, /6, (a).

Proof. By Lemma 4.3.8, ¢(H) is finite and free over &(G). Writing &'(G) in the
form R[Y1,...,Y,] and O(H) in the form O(G)[ X1, ... , Xnll/(fi(X41,... , Xn)—-Yi),
where the structure map ¥* sends Y; to f;, it is easy to see that we may choose
a = det(9f;(Y1,...,Y,)/0Y;). By the “formal division algorithm,” it is clear that
{fi(X1,...,X,) — Y} is a regular sequence in R[X1,... ,X,,Y1,...,Y,]. We are
done by Theorem 4.3.9. O

We will use the following corollary to study the “connected component” of a
p-divisible group in Part II, Section 6.2.2.

Corollary 4.3.11. If G is a commutative formal Lie group over R of relative di-
mension n and [m] : G — G is an isogeny of degree v, then disc(G[m]) = m"".
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Proof. 1t clearly suffices to show that the discriminant of & = €(G) over itself
under the map [m]* : & — & is m*™. By the results of Appendix A, QG/ Spf R has
a basis wq, ... ,wy, consisting of invariant differentials, and since G is commutative
Corollary A.2.7 shows that

[m]*w; = muw;.

Hence, if @ = wy A -+ A wy,, we see that [m]|*a = m"«. Thus, by Corollary 4.3.10
(because the w; are a basis for the module of differentials Q! o) R)

vn

discy /jmj- o = Nz /[m)=or (M™) = m
O

To prove Theorem 4.3.9, it is conceptually clearer to invoke a more general result,
due to Tate (see the appendix to [8]).

Proposition 4.3.12 (Tate). Suppose R is a ring, A an R-algebra, fi,... ,fn a
reqular A-sequence, o : A — A/(f;) = C the canonical projection. Suppose further
that C' is finite free over A and that the kernel of

B:B=A0C 2% ¢
R
is generated by a reqular B-sequence gi,...,gn. Writing 1® f; = Y bijgj, d =
det(b;;), and X =ida Qg A,
1) C is R-Gorenstein;
2) there is a C-module generator X\ € Hompg(C, R) such that a(N'(d)) = 1;

(1)
(2)
(3) for any c € C, a(cN(d)) = ¢;
(4) dc/r = B(d).

With the exception of a few typographical errors, the proof presented in [8] is
quite clear. The reader is therefore referred to [8, Appendix] for the proof.

Proof of Theorem 4.3.9. We wish to apply Proposition 4.3.12 with R = €, A =
OT1,...,T,], and C = &'. Tt is easy to see by finiteness that

ARC = ﬁ,[[Tl,... ,Tn]]
R

The map f = a®ide : B — C takes X; to T;, and it is easy to see (using the
“formal division algorithm”) that ker 5 is generated by X; — T;, which is clearly a
B-regular sequence. Therefore, the hypotheses of Proposition 4.3.12 are satisfied.
Write f; = Y b;;(T; — Tj), and let d = det(b;;). Differentiating,

8_]07,.:”_,_28(7[ [

so 0f;/0T; = B(0fi/0T;) = B(bij), which means that 5(d) = det(df;/0T}). O
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Part II
Tate’s Theorems

5 Definitions

Fix a prime p.

5.1 p-Barsotti-Tate groups

Given an abelian scheme o/ — S, the system (#/[p"],i,) with natural maps i, :
A [p"] — /[p" ] is the motivating example of a p-Barsotti-Tate group. While we
will primarily study these objects in the abstract for purposes of conceptual clarity
and technical flexiblity, we will occasionally turn to the theory of abelian schemes
as a source of motivating examples. In everything that follows, (R, m, k) is a local
pseudocompact ring with char £ = p > 0. When extra hypotheses are necessary, we
will impose them.
We recall the definition we made in the General Introduction.

Definition 5.1.1. A p-Barsotti- Tate group of height h over a scheme S is an in-
ductive system (G, %, )n>0 of finite locally free commutative S-group schemes and
closed immersions i, : G, = G411 such that

1) [Gn] = P
2) iy, identifies G,, with G11[p"].

It is clear that the category of p-Barsotti-Tate groups is closed under the for-
mation of finite products (in the obvious manner) and there is an evident notion of
base change. In particular, given a p-Barsotti-Tate group over a discrete valuation
ring, we can speak of the generic fiber and the closed fiber.

Remark 5.1.2. We could alternately require of our system of groups G,, that for all

s and ¢, there exist exact sequences

is S t 'S
(5.1.1) 0= G 24 aon Ph ey PGy, 25 a0,

Let us show that this is equivalent to Definition 5.1.1. Given sequences (5.1.1),
taking the system (G, ipn,1) yields the first definition. On the other hand, setting
Gst = lg4t O - 0 Qg1 0 ig clearly identifies G5 with Gsi4[p®]. Furthermore, by
definition, [p"|Gy, = 0, i.e., [p"]|g, factors through the identity section. Therefore,
p°]la,,. factors through Gy < G,14. The induced sequence

0—-Gs > Gsy =G —0

is then exact by (a priori left-exactness and) an order calculation, so we have an
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exact diagram

is ,t
0 y Gy > Gs—l—t > Gs—l—t > Gs+t —) Gy ——0

¢
Definition 5.1.3. Given a p-Barsotti-Tate group G = (G,) over a Henselian lo-

cal ring, the connected component G° of G is the system formed by the GO and
functoriality of the connected-étale sequence.

We see that GV is itself a p-Barsotti-Tate group (of height at most ht G): it is

clear that the i, induce closed immersions G — GY, ;. To calculate the order |G|,
we may pass to the geometric closed fiber, and we are done by the splitting of the
connected-étale sequence and an easy inductive argument using Remark 5.1.2. Note
that G° has height zero (i.e., is trivial) unless the local base has residue characteristic
.
Example 5.1.4. Suppose G is a commutative algebraic group scheme over a base
S and the map [p] : G — G is finite locally free of rank p" (e.g., G could be an
abelian scheme over S or Gy,/s). The map [p"] : G — G is then finite locally free
of rank p™", and we see by changing the base of [p] to G[p"~!] that there are exact
sequences

0 — G[p] = Gp"] — G[p" '] = 0.

By induction, we see that |G[p"]| = p™* and that the canonical closed immersion
in : G[p"] = G[p"*!] identifies G[p"] with G[p"*!][p"]. Thus, the system (G[p"],iy)
is a p-Barsotti-Tate group, the p-Barsotti- Tate group associated to G, which we will
denote by G(p). This is the fundamental example of a p-Barsotti-Tate group which
arises geometrically.

In the case where the base S = Spec R with R a complete Noetherian local ring
and G is flat over R, then the completed local ring ﬁm,G of the closed point on
the identity section is topologically flat over R and the connected component G (p)°
has a very concrete interpretation. Recall from Example 2.2.2 that restricting G to
“small points” (Artinian points supported on the identity section) yields a formal
R-group G. .

It is easy to see that G[p"] = G[p"] = G[p"]° (the last identified with its image
in the category of formal group-functors via Proposition 2.1.26(4)). If G is smooth
over R then [p"]: G — G is an isogeny of formal Lie groups over R. By Corollary
3.2.8, the natural monomorphism h_n;G’ [p"] — G is an isomorphism, and therefore
the connected p-Barsotti-Tate group G(p)° is identified with the p-power torsion
levels of a formal Lie group G for which [p] is an isogeny. A crucial fact to be proven
later is that all connected p-Barsotti-Tate groups over R are “the same” as formal
Lie groups on which [p] is an isogeny (see Theorem 6.1.3 and Theorem 6.2.1 below.)

o
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Example 5.1.5. Choosing G = G, in Example 5.1.4 shows that over R we may
view the multiplicative p-torsion p-Barsotti-Tate group (,n,%,) with the canonical

closed immersions p,n — pyn+1 as the p-power torsion levels of ém (We may
observe this concretely:

lim &(1,) = Iim RIX]/((1 + X)”" — 1) = R[X] = &(G)

because R has residue characteristic p.) In general, over any base scheme, G,,(p) is
a p-Barsotti-Tate group of height one. O

Definition 5.1.6. A p-Barsotti-Tate group is formally étale if G,, is étale for every
n.

Example 5.1.7 (Formally étale p-Barsotti-Tate groups). Given a connected
scheme S, formally étale p-Barsotti-Tate groups G over S have a simple underlying
structure: if ht G = h, then we see that G, is identified with the abelian group
(Z/p"Z)" = ( I%Zp /Z,)", equipped with a continuous action of the étale fundamen-
tal group of S (using a generalization of the étale dictionary). In particular, when
S = Spec R, a formally étale p-Barsotti-Tate group is identified with a continuous
Gal(ks/k)-action on the discrete group (Q,/Zy)". O

Example 5.1.8 (Dual p-Barsotti-Tate groups). Dualizing Remark 5.1.2, we see
that (Gy,7y,,) is another p-Barsotti-Tate group, the dual p-Barsotti-Tate group.
Clearly, ht G¥ = ht G and there is a unique natural isomorphism ag : G — GV
compatible with Cartier duality on torsion levels. Formation of the dual p-Barsotti-
Tate group is clearly compatible with base change. Given an abelian scheme &7, we
have already described the associated p-Barsotti-Tate group, «(p). If &7 denotes
the dual abelian scheme, the Cartier-Nishi duality theorem yields natural isomor-
phisms & [p"]V = oV [p"] compatible with change in n (where the first ()" stands
for the Cartier dual), so we see that <7 (p)Y = &V (p). O

As Examples 5.1.4 and 5.1.7 make clear, when working with p-Barsotti-Tate
groups over R, it is quite natural to consider them as functors and to examine
their images in the category of formal group-functors over R with a view toward
assemblimg the direct limits in the formal category. We will construct such limits
and characterize them in Sections 6.1 and 6.2. We will see that Definition 5.1.3 and
Definition 5.1.6 will accord with the formal group terminology of part I. However,
we see from Example 5.1.8 that the p-Barsotti-Tate viewpoint is also indispensable,
for there is no natural construction of the dual in the formal category. Similarly,
the formation of the generic fiber of a p-Barsotti-Tate group (i.e., making non-local
base change) is much easier to understand on the level of p-Barsotti-Tate groups.

5.2 The Tate module

Let K be a field of characteristic zero (e.g., the field of fractions of a p-adic integer
ring).

Given a p-Barsotti-Tate group G = (G, i,) over K, we can construct the ab-
stract version of the p-adic Tate module of an abelian scheme. Let K/K be a fixed
separable closure.
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Definition 5.2.1. The Tate module of G is @Gn(f?), taken with respect to the
Jim—1: Gn = Gpn_1 of Remark 5.1.2

By functoriality, we view T'(G) as a Z,[Gal(K /K)]-module. It is easy to see that
the underlying module is a free Z,-module of rank ht G on which Gal(K/K) acts
continuously.

Example 5.2.2. We define Z,(1) = T(Gy,(p)). It is easy to see that this is just
the representation of Gal(K/K) on Z, defined by the p-adic cyclotomic character
ep: Gal(K/K) — Aut(upoo(l?)) =Z,. O
Using the functoriality of Cartier duality and the étale dictionary, we see that
T(GY) = T(G)Y = Homg, (T(G), Zy(1)) with the natural Gal(K /K)-action.

Let G be a p-Barsotti-Tate group over K. Given T(G), we may recover Gy, (K)
by forming T'(G)/p"T(G) (because ji 1 is induced by multiplication by p). On
the other hand, since char K = 0, we recall that the étale dictionary is nothing more
than the “K-valued points functor.” Thus, we have shown the following.
Proposition 5.2.3. The functor G ~ T(G) gives an equivalence of categories be-
tween p-Barsotti- Tate groups over K and finite free Z,-modules with continuous
Gal(K /K)-action.

A variant of the Tate module which will appear in the proof of the Hodge-Tate
decomposition is the module ®(G) = li_n;Gn(I? ) with transition maps given by the
transition maps of G. As above, we find that G,,(K) = ®(G)[p"], and consequently,
we arrive at a similar proposition expressing the fact that G ~ ®(G) is fully faithful
on p-Barsotti-Tate groups over K. This implies that there is a similar relationship
between ®(G) and T'(G). In fact, we may make this explicit.

Proposition 5.2.4. As functors on the category of p-Barsotti- Tate groups over K,
there are natural Gal(K /K )-isomorphisms

T(G) 2@ Q,/Z, = 9(G) T(G) = Homgz, (Qp/Zy, (G)).

Proof. The isomorphism T(G) ®z, Qp/Z, = ®(G) follows from the fact that lim
and ® commute, combined with the fact that T'(G)/p"T(G) = G, (K).

The isomorphism T'(G) — Homgz,(Qp/Zy, ®(G)) comes about as follows: there
is a natural isomorphism

Homz, (Qp/Zyp, lim G, (K %klnHomZp( Zy/p"Zp, lim G (K K)).

But the system (Gy,,i,) has injective transition maps and each G, (K) is a finite
p-group, so it is easy to see that there are natural isomorphisms

Gn(K) = Homg, (Zy, Gn(K)) = Homg, (Zy/p"Zp, lim Gy (K)),

and therefore the projection maps T'(G) — T(G)/p"T(G) yield a natural isomor-
phism T(G) = Homz,(Qp/Zy, ®(G)). It is easy to check that all of the isomor-
phisms are Gal(K /K)-equivariant. O

Thus, for a p-Barsotti-Tate group G over K, the Tate module T(G) and the
module ®(G) carry information equivalent to G, and one may easily move among G,
T(G) and ®(G). This easily understood mutual relationship will play an important
role in Proposition 7.1.2, where we exploit all three objects simultaneously.
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5.3 Statement of the results

Let R be a complete mixed characteristic (0, p) discrete valuation ring with fraction
field K. For a p-Barsotti-Tate group G over R, we let Gx denote the generic fiber of
G, and we define T(G) & T(Gk). We write G¥ for the dual p-Barsotti-Tate group
to G.

Our goal is to prove the theorems alluded to in the General Introduction in
the context of p-Barsotti-Tate groups. In particular, we will show two fundamental
results:

Hodge-Tate Decomposition (Theorem 7.1.3). There are finite dimensional K -
vector spaces tgv attached to G¥ and t7, attached to G such that there is a canonical
Gal(K /K)-equivariant decomposition

HOmzp(T(G), CK) = (tgv % CK) ® (t*G % CK(—l))

Isogeny Theorem (Theorem 7.2.1). The generic fiber functor G ~ Gk is fully
faithful.

It is difficult and conceptually unsatisfying to try to prove these theorems with-
out leaving the context of p-Barsotti-Tate groups. Therefore, we will first see how
to assemble p-Barsotti-Tate groups into formal limits called p-divisible groups. We
will see that the connected components of p-divisible groups are actually formal Lie
groups (the Smoothness Theorem). Given this information, we will do two things:

1) We will see how to define “points” of a p-divisible group in such a way that
the points in the connected component form an analytic group. Given such
an analytic group, we will define a logarithm function which, in conjunction
with a crucial input from Cartier duality, will connect the Tate module of a
p-Barsotti-Tate group to the global geometry of the limit p-divisible group.
This will furnish a proof of the Hodge-Tate decomposition.

2) We will use our results about formal Lie groups (e.g., Corollary 4.3.11) to com-
pute the discriminant ideals of the finite stages of p-Barsotti-Tate groups; these
calculations, along with data produced by the Hodge-Tate decomposition, will
form the basis for a proof of the Isogeny Theorem.

With this plan in mind, we begin our discussion of

6 The connection to formal groups

Restricting our attention to Artinian points, we may view the finite stages G, of
any p-Barsotti-Tate group G over our complete discrete valuation ring R as formal
group-functors (pro-represented by the R-algebras &'(G,,) with their unique profinite
R-algebra topologies). This allows us to form the limit lian, which we will also
denote by G' (a minor abuse of notation; see Theorem 6.1.3). In this section we
will show that the category of p-Barsotti-Tate groups is equivalent, under this limit
operation, to a category of formal groups which we will call p-divisible groups. The
primary advantage of this point of view is embodied in the Smoothness Theorem,
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which shows that the connected component of a p-divisible group is actually a formal
Lie group. Given this crucial piece of information, we can define a second invariant
of a p-divisible group, the dimension. The remarkable fact, proved in the Pairing
Proposition (Proposition 7.1.2), is that the Tate module T'(G) = T (G ), depending
only upon the generic fiber, is sensitive to this dimension, which depends upon the
global structure of G over R.

6.1 p-divisible groups

In this section, we drop the hypothesis that R be a complete discrete valuation ring,
requiring only that R be a pseudocompact ring. Given a p-Barsotti-Tate group
(Gp,in) over R, write G = @Gn in the category of formal R-groups. In the case of
ordinary groups, inductive limits G of “p-Barsotti-Tate groups of height h” are easily
classified by the three properties: 1) p : G — G is a surjection; 2) G = @G[p”];
3) G[p] has order p". By standard arguments, these three properties also characterize
the formally étale limits of formally étale p-Barsotti-Tate groups. The following two
definitions extend properties 1), 2), and 3) to the category of formal R-groups.

Definition 6.1.1. A commutative formal R-group G is a formal p-group if the
morphism [p] : G — G is topologically faithfully flat and the natural formal closed
immersion lim G[p"] — G is an isomorphism.

Note that if R is a local pseudocompact ring with residue characteristic p, Corol-
lary 3.2.8 shows that every commutative formal R-group G such that [p] : G — G
is topologically faithfully flat is a formal p-group.

Definition 6.1.2. A commutative formal R-group G is a p-divisible group of height
h if G is a formal p-group and G([p] is a finite group of order p”.

Having written down the definitions in general, the formally étale situation also
generalizes as follows. Given a pseudocompact ring R, let B, denote the category of
p-Barsotti-Tate groups over R and let B, denote the category of p-divisible groups
over R.

Theorem 6.1.3. There is a height-preserving equivalence of categories between B,
and B, sending a p-Barsotti-Tate group (G, ip) to @Gn and a p-divisible group
G to (G[p"],in), where iy, is the obvious closed immersion.

Proof. Given a p-divisible group, taking the fiber product of [p] : G — G with
G[p" '] = G gives an exact sequence

(6.1.1) 0— Gp] = GPp"] = Gp" '] =0

for each n. By Proposition 3.1.12 and induction on n, we see from (6.1.1) that G[p"]
is a finite R-group for all n. Since |G[p]| = p", we see that |G[p"]| = p™". Taking
the fiber of G[p"] — G over G[p"*!] — G shows that i, : G[p"] — G[p"T!] is a
closed immersion. Thus, (G[p"],iy) is a p-Barsotti-Tate group over R. Because G
is formal p-group, we see that li_n;G p"] =G.

On the other hand, suppose (G, %,) is a p-Barsotti-Tate group over R. Letting
G = li_n;Gn, we see by Yoneda’s Lemma that G, = G[p"]. Because each G, is
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topologically flat over R, G is also topologically flat over R. Finally, we claim that
[p] : G — G is an isogeny of degree p". Since G[p] is a finite R-group of order p”,
it remains to prove that [p] is topologically faithfully flat. However, Remark 5.1.2
shows that the map ji 1 : G, = Gp—1 induced by [p] is topologically faithfully
flat. By Proposition 2.1.19, we see that [p] : G — G is topologically faithfully
flat. Thus, G is a p-divisible group, and (G[p"],in) = (Gp). It is clear that both
G ~ (G[p"],in) and (Gp) ~ lim Gy, are functorial, and we have just verified that
they are quasi-inverses. O

Now that we have characterized, in some degree of generality, exactly which
formal groups arise as limits of p-Barsotti-Tate groups (by which we will always mean
“limits of torsion levels of p-Barsotti-Tate groups”), we reinstate the hypothesis
that R is a local pseudocompact ring with residue characteristic p. Because R is
Henselian, we may consider the connected component of a p-divisible group, and
it is clear by functoriality and the comments following Definition 5.1.3 that the
connected-étale sequence of a p-divisible group is a sequence of p-divisible groups.
The usual arguments show that a formally étale p-divisible group may be viewed as
a discrete Galois module for the absolute Galois group of the residue field of R. Tt
turns out that connected p-divisible are also well-behaved.

Example 6.1.4. Recall from Example 5.1.4 that for a flat commutative algebraic
group scheme G over a complete Noetherian local ring R for which [p] : G — G is
finite locally free of rank p”, the connected component G(p)° (viewed as a formal
group via Theorem 6.1.3) is represented by O . When m is a smooth point of G,
we see that G(p)? is formally smooth.

In particular, when G = G,,,, we see by making the change of variable z = t+1 in
the algebra R[z,z '] of G, g that Gy, (p)° = G, is represented by R[t] (with the
usual formal Hopf structure as given in Example 2.2.4), hence is formally smooth.
Similarly, when G is an abelian scheme over R, we see by smoothness that G(p)° is
represented by the completed local ring at m, which has (relative) dimension equal
to dimG. In both of these cases, none of the finite stages G[p"]° is smooth, in
contrast to the formal smoothness of the limit. O

Example 6.1.4 demonstrates that the connected component of a p-divisible group
over R has a rich structure which is not apparent at finite stages. In general, as
we will prove in Theorem 6.2.1 below, the connected component of any p-divisible
group is always formally smooth. This crucial result (due to Serre and Tate) will let
us use ideas from Lie theory (e.g., invariant differentials) in the study of connected
p-divisible groups.

6.2 The smoothness theorem

We retain the notation that (R, m, k) is an arbitrary local pseudocompact ring with
char k = p. Recall that “formal Lie group over R” and “formally smooth formal
group over R of finite relative dimension” are synonomous.

Theorem 6.2.1 (Smoothness Theorem). If G is a connected p-divisible group
over R, then G is a formal Lie group over R.
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By Proposition 3.3.1, if G is a formal group over a pseudocompact ring R with
residue field ¥ and &' is a field extension of k, then G is a formal Lie group over
R if and only if G} is a formal Lie group over k'. Therefore, it suffices to prove
the Smoothness Theorem on the geometric closed fiber, so we may assume that the
base R is a field k of characteristic p > 0. (If char k # p, then the only connected
p-divisible group over k is the trivial group, as we easily see from the p-Barsotti-Tate
vantage point.) In what follows, k£ will be a field of characteristic p > 0. Using the
fact that chark = p > 0, we will reduce the proof of the Smoothness Theorem over
k to the following:

Proposition 6.2.2. If G is a connected formal group over k, then G is a formal
Lie group if and only if the relative Frobenius F : G — G?) is an isogeny.

Lemma 6.2.3. Proposition 6.2.2 implies Theorem 6.2.1.

Proof. Having reduced our base to k, we recall that the commutative formal groups
over k form an abelian category where epimorphisms (called “surjections”) are topo-
logically faithfully flat maps.

If G is a connected p-divisible group, then so is the base change G?). Since any
p-divisible group is a formal p-group, the map [p] : G®) — G is a surjection, but
by Theorem 3.2.4 this factors as

a» Y, gL g

so F must be a surjection. Furthermore, by definition, G[p] is finite of order p” and
ker F' C G[p|, so F' is an isogeny. O

Therefore, it remains to prove Proposition 6.2.2. In what follows, G is a con-
nected formal group over k. Given a morphism f : G — H, we will let G[f] denote
ker f.

Lemma 6.2.4. If the relative Frobenius F : G — GP) is an isogeny, then deg F =
pl for some h > 0, |G[F"]| = p™ for all n, and the natural monomorphism
lim G[F"] — G is an isomorphism.

Proof. The final ismomorphism is easily extractable from the proof of Proposition
3.2.7. That deg F = p” for some integer h > 0 follows from the structure theorem
for finite connected group schemes (Theorem 3.2.11) and the fact that any closed
subgroup of G must be connected. To compute the order of G[F"] we will show
that there is an exact sequence

E,:0— G[F] —» G[F"] — GP[F""1] =0

for each n. By base change, GP)[F"~'] = G[F"']®), so by induction we may
assume that G®)[F"~1] is a finite k-group of order p("~ D", By Proposition 3.1.12,
we see that G[F"] is also a finite k-group, and we are done by the multiplicativity
of orders in an exact sequence.
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To see that there is such a sequence E,,, recall that topological faithful flatness is
stable under base change. Therefore, we see that F" : G — G®") is also an isogeny.
Considering the triangle

G i » G
% % 1
G®")
completes the proof. O

Proof of Proposition 6.2.2. Let (A, m) be the (local) profinite (augmented) k-algebra
of G, and let (Bp,m;) be the finite k-algebra of G[F"]. Compatibility of the
group laws shows that the splittings induced by the augmentations A = k£ & m and
B, = k®m,, are compatible (for all n) and that m = Jimm,,. Furthermore, the maps
A — By, corresponding to the natural injection G[F"| < G are all surjective (as this
is true of kernel morphisms in general). By finiteness we may choose z1,... ,zy € m
such that their images in m; /m? are a k-basis. Composing the transition maps gives
amap B, — B; which identifies G[F'] with G[F"|[F] (e.g., by Yoneda’s Lemma), and
therefore we have a natural induced isomorphism B, /F(m,) = Bj. Since F(m,) is
generated by {z? : x € m,} and p > 2, there is an isomorphism of cotangent spaces
m,/m2 5 my/m?. We thus see that the images of z1,... ,z, are a k-basis for each
m,/m2.

The result of all of this is that the maps u, : k[Xi,...,Xs] — B, sending
X; — m; are a compatible system of surjections. Because B, = O(G[F"]), we see
that (an,... ,an) C keru,. On the other hand, dimy(B,) = p™ by Lemma
6.2.4, so (XP" ... ,Xé’n) = ker u,, and the u,, induce a compatible system of isomor-
phisms k[X1,... ,Xg]/(an, . ,Xé’n) — B,,. Passing to the inverse limit, we get
an isomorphism k[X7,... , X,] = A of profinite k-algebras.

The converse follows by an explicit calculation (using the concrete description
of the morphism F'). O

Corollary 6.2.5. If the residue field k of R is perfect and G is a p-divisible group
over R, then the connected-étale sequence 0 — G° — G — G — 0 splits as a
sequence of formal R-functors. In other words, there is an isomorphism of profinite
R-algebras 0(G) = 0(G°) @ O(G®) compatible with the connected-étale sequence.

Proof. Because k is perfect, the closed fiber of the connected-étale sequence uniquely
splits, and this says that there is an isomorphism of profinite €(G¢);-algebras

(6.2.1) O(Gy) =2 OGN [X1, ..., X = OG*) % O(G"),.

On the other hand, both &(G®)[ X1, ..., X/] and &(G) are topologically faithfully
flat over €(G®), which is itself topologically flat over R. We may lift the closed
fiber isomorphism (6.2.1) to a map

O(G*) % 0(G%) = O(GN[X1,..., X, = O(G)

of topologically flat profinite R-algebras, and this is an isomorphism by a Formal
Nakayama’s Lemma argument. O
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Corollary 6.2.5 will play a critical role in our study of the analytic groups at-
tached to p-divisible groups in Section 6.3.

Remark 6.2.6. The use of €(G¢") and topological flatness considerations over this
ring in the proof of Corollary 6.2.5 demonstrates once again the importance of the
concept of topological flatness over non-Noetherian pseudocompact rings, even for
an analysis of formal groups over a complete Noetherian local ring. ¢

Definition 6.2.7. Given a p-divisible group G over R, we define the dimension of
G, denoted dim G, to be the (finite) relative dimension of the formal Lie group G°.

Equivalently, writing ﬁLGO) = R[Xy,...,X¢], we see that dim G is the rank of
the finite free R-module I/I2, where I is the augmentation ideal of &#(G?). Similarly
(see Appendix A), the dimension of G is rank of the finite free ¢(G°)-module ng IR
6.2.1 The behavior of the dimension under dualization

When our local ring R is Noetherian, Example 6.1.4 shows that an abelian scheme
® over R of relative dimension g has associated p-divisible group &(p) of height
2g and dimension g. If " denotes the dual abelian scheme to &, then &Y has
dimension g and Cartier-Nishi duality (see Example 5.1.8) identifies 8" (p) with the
dual p-divisible group &(p)", so this dual p-divisible group has dimension g as well.
Thus,

dim &(p) + dim &(p)" = ht &(p).

Similarly, the multiplicative group G, has associated p-divisible group G, (p)
of height one and dimension one. On the other hand, since u‘Xn = Z/nZ, we see
that G, (p)" is formally étale, so dim G,,(p)Y = 0 by definition. Therefore,

dim G, (p) + dim G,,,(p)” = ht G,,,(p).
In general, we have the following proposition.

Proposition 6.2.8. Suppose G is a p-divisible group over R. If n = dim G, n" =
dim GV, and h = ht G, then
n+n" = h.

Proof. Because the height and dimension are invariant under local base change, we
may work over the closed point and assume that R = k. By a faithfully flat base
extension, we may take k to be perfect. Because [p] is an isogeny and we are in an
abelian category, every map in diagram (3.2.1) is a surjection. Therefore, there is
an exact sequence

(6.2.2) 0— G[F] = Gp] = GP V] - 0.

Clearly, |G[F]| = |G[p][F]| = p™ by Proposition 6.2.2 and the splitting of the
connected-étale sequence, with F' an isomorphism on the étale factor. By Theo-
rem 3.2.4, we see that there is an exact sequence

0— GPV] = cPp L Gl
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By duality, we see that
0= G[p'[F] = Glp]" > GP[p]Y — GPp][V]Y -0

is exact. The middle two terms have the same order, so using the definition of
the dual p-Barsotti-Tate group, the compatibility properties base change, and the
multiplicativity of orders, |G®)[V]| = |GY[F]| = p"”. By (6.2.2), ph =pnt»’. O

Proposition 6.2.8 will help us to relate G and G in the proof of the Hodge-Tate
decomposition.

6.2.2 Using smoothness to compute discriminants of p-Barsotti-Tate
groups

Our strategy for proving the Isogeny Theorem will be to reduce the problem to
showing that a morphism f : G — H of p-divisible R-groups which is an isomorphism
on generic fibers is in fact an isomorphism. As we discussed in the beginning of
Section 4, given that f : G — H induces an isomorphism on generic fibers, we
can prove that f is an isomorphism of p-divisible groups over the entire base R by
showing that disc G[p'] = disc H[p'] for all . We will show in Proposition 6.2.12
that disc G[p'] depends only upon ¢, dim G, and ht G. The key point is to show that
T(G) “knows” dim G. With this in mind, we proceed.

Given a p-Barsotti-Tate group over R, the calculation of disc G, reduces to a
computation of disc GY (see Corollary 6.2.11), and the Smoothness Theorem (The-
orem 6.2.1) relates disc G to the discriminant of the isogeny [p"] : G° — G°, which
we can understand using our results about formal Lie groups.

Lemma 6.2.9. If 0 — G; — Go — G3 — 0 is a short-exzact sequence of finite
locally free group schemes over a base S, then

disc(Gs) = disc(Gl)lG?" disc(G3)|G1‘.

Proof. We immediately reduce to the case where the base is a local ring A. Let
B = 0(G3) and C = 0(G2). By the definition of a short exact sequence, there is
a tower A — B — C of finite locally free ring extensions of constant ranks, and
rkp C = |G| (it is an exercise in commutative algebra to see that such a tower must
in fact be free). By the transitivity of discriminants (Theorem 4.2.1),

rkc B

disco/a = Npya(disce,p) discB/A .

Thus, it remains to show that Ng/4(disco/p) = disc%(/f‘AB, where C' = C/IgC, for
Ip the augmentation ideal of B. By Yoneda’s Lemma, there is an isomorphism
compatible with second projections

G1 Xs G2 = G2 X, G

given on points by (z,y) — (zy,y). Translating this into algebra and using compat-
ibility of the norm with base extension, this says exactly that (discs / 4)C = disce /B-

rka B n

Therefore, by the definition of the norm, Ng /4 (discc,/p) = discé/A .
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Lemma 6.2.10. If X — S is finite locally free, then X is étale over S if and only
disc(X) is the unit ideal.

Proof. 1t is easy to see that disc(X) is the unit ideal if and only if disc(X}) is a
unit in every geometric fiber X xg Speck. Because X — S is finite locally free,
we easily reduce to the case where X = Spec A for some finite local k-algebra
(A,m), and we are reduced to proving that discy A = 0 if A # k (the converse is
clear). Multiplication by any a € m is a nilpotent k-endomorphism of A, hence
Tryx(a) = 0. Thus, taking a k-basis e, ... ,e, for A with e; = 1 and e; € m for
i > 1, we see that the matrix Tr 4/ (e;e;) has determinant zero if n > 1. O

Corollary 6.2.11. For a finite group scheme G over R, disc G = (disc GO)‘Gét‘.

Proposition 6.2.12. Given a p-divisible group of height h and dimension n over
R, disc(G[p"]) = prr"

Proof. By Corollary 6.2.11, it suffices to show that disc(G[p”]°) = p1G°P"]l But
we know that [p] : G° — G is an isogeny of formal Lie groups by the Smoothness
Theorem, and therefore we are done by Corollary 4.3.11. O

6.3 An analytic interpretation

In this section, we suppose that R is a complete mixed characteristic (0,p) discrete
valuation ring with fraction field K and that G = Spfp A is a formal group over R.

6.3.1 Points and the logarithm: generalities

Definition 6.3.1. Given a topological R-algebra S, the group of points of G in S,
denoted G(S), is defined to be the group Homgont (A, S) of continuous R-algebra
maps A — S.

If S is the ring of integers in the completion L of an algebraic extension of K
and G is a formal Lie group over R with relative dimension n, we see upon choosing
formal coordinates for G that G(S) is identified with the open unit ball in L™ (under
the do, metric, where d (y1, ... ,yn) = max{|y;|}), and the formal analyticity (with
R-coefficients) of the group law for G gives an analytic group structure to G(S).
In other words, taking points of a formal Lie group results in a “rigid Lie group.”
Using p-adic Lie theory, one can construct a canonical local analytic isomorphism
log : G(S) — tg(L), with t¢(L) as in Definition 6.3.3 below, and there is a p-
adic “Cambell-Baker-Hausdorff formula” which explains why the logarithm map
G(S) — tg(L) is a group homomorphism. While this may be more satisfying from an
analytic perspective, we will not take the p-adic Lie theory approach here. Instead,
we will use a formal “generic fiber” isomorphism which exists in the commutative
case (which is all that we need here) to construct the canonical logarithm:

Lemma 6.3.2. IfI' is a commutative formal Lie group of dimension n over a field
K of characteristic zero, then there is an isomorphism of formal K-groups I' =2

H?:l Ga'
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Proof. The methods involved in this proof are rather orthogonal to our purposes,
so we refer the reader to Appendix B. O

Definition 6.3.3. For a formal Lie group G over R with augmentation ideal I, the
tangent space tg to G at the identity is defined to be the functor on topological
R-modules represented by I /ﬁ By Proposition A.2.1, this is equivalent to the
functor represented by the R-module Qéf r of left-invariant differential forms on G,
and t;(R) is a finite free R-module. The points of te in a topological R-algebra L,
denoted by tg(L), is the set HomR_mod(I/ﬁ, L).

Given L, the natural map L ®rtg(R) — te(L) of (finite free) L-modules is an
isomorphism, where ¢ (L) is canonically topologized by the product topology.

Proposition 6.3.4. If G is a commutative formal Lie group of dimension n over
R and L is the completion of an algebraic extension of K with integer ring S C L,
then there is a natural homomorphism of topological groups

log : G(S) — ta(L),

functorial in the pair S C L as well as in G. Upon choosing an isomorphism
O(G) = R[Xy,...,X,] and letting

BE {(x1,...,3,) € G(S) : || < |p|” /P~

B {1 € tg(L) : [r(w)| < [p| /* Vior all w € Q) 1,

the logarithm yields a topological (analytic) isomorphism B = B'.

To prove Proposition 6.3.4, we will first prove a formal analogue of Poincaré’s
Lemma. Given antiderivatives for the invariant 1-forms on G, we will construct the
logarithm and show that it satisfies functorial properties. Finally, we will establish
that it is a local isomorphism.

Lemma 6.3.5. Given any invariant differential form w € QE/R, there exists a
unique formal power series Q,, € K[X1,... ,X,] such that Q,(0) =0 and dQ,, = w.

Proof. We may “formally change the base” to K by way of the canonical continuous
injection R — K. By Lemma 6.3.2, we then see that there is an isomorphism

[ Ga /K" By the functorial properties of left-invariant differentials (or
by Proposition A.2.1), we see that QllJ[lGa/K 5 Hﬁéi/K under the natural map
Qh Gu/K 5 Hp;‘Qh Gu /K and now it is easy to see that we are done. O

Remark 6.3.6. Because 09Q,/0X; € R[Xy,...,X,] for all i, we see that each €2,
has the property

(1) if a is a coefficient of a term of total degree m, then ma € R.

Therefore, the usual estimates show that €, converges to an analytic (hence continu-
ous) function on G(S). By Proposition A.2.5 and Remark A.2.6, we see that m*Q,, =
i Q0w + P58, and therefore for z1,z2 € G(S), Qu(z1 + z2) = Qu(z1) + Qu(z2).
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Definition 6.3.7. The logarithm is the topological group homomorphism

log = logg; : G(S) = ta(L) = Homp (g, L)
defined by
z = (w = Qyu(z)).

This is easily seen to be independent of the isomorphism &' (G) = R[X1,... , X,].

Remark 6.3.8. We will prove in Lemma, 6.3.12 below that for a p-divisible group G
over R, G(S) has a unique topological Z,-module structure such that the analytic
group G°(S) is an open subgroup. Having established that log is continuous in
Remark 6.3.6, we conclude by continuity that if G is a p-divisible group, log is
actually Z,-linear. ¢

Because group morphisms pull back left-invariant differentials to left-invariant
differentials and Q4<,, = ¢*),,, the functoriality of log in G is clear. Functoriality
in S C L follows from the fact that €, has coefficients in K. To complete the
proof of Proposition 6.3.4, it remains to show that log establishes a local analytic
isomorphism.

Proof of the local isomorphism. We will proceed by constructing a formal inverse
function and then checking that both sides converge on appropriate balls.

Write 0(G) = R[X1,...,X,]. We know that there exist left-invariant differen-
tials wy, ... ,w, freely generating QE‘/R = @ R[X1,...,Xp]dX;. Therefore, there
exist aj; € R[X1,... ,X,] such that w; = " a;;dX; and det(a;;) € R[X1,...,X,]*.
Reducing modulo (X1,...,X,), we see that we may assume after a homogeneous
linear change of coordinates that a;; = §;; (mod Xi,...,X,). Thus, we may write

Q; &of Q,; = X; + higher order terms.

We also know that €; has the property (f) of Remark 6.3.6. By an inductive
calculation, given that €; = X; (mod Xi,...,X,), we see that there is a formal
inverse Q' = (Q_1,...,Q_,) to Q = (Q4,...,Q,) which has the weaker property

(1) if a is a coefficient of a term of total degree m, then mla € R.

Clearly, property (f) implies (). But it is clear that any n-tuple of formal power
series 2 = (4,...,9Q,) with property () converges to an analytic function in the
ball of radius [p| ="/~ in the du, metric on L". Using wi,... ,w, to identify tq(L)
with L", we see that Q! gives an analytic inverse to Q on the open ball of radius
lp|="/®=1) around the origin in t¢(L) (which must be a group homomorphism).
(Because we cannot be sure that Q! satisfies any stronger property than (i), we
cannot a priori extend the analytic isomorphism to a larger ball of t;(L).) O

Example 6.3.9. We saw in Example 6.1.4 that G = G,,(p) = G, is a con-
nected p-divisible of height one and dimension one. Given S and choosing a basis
for 0(Gy,(p)), it is not too hard to see that there is a topological isomorphism
G(S) - Us : ¢ — 1+ z, where Ug is the (topological) group of principal units
of S. Classically, we have the ordinary p-adic logarithm log, : Us — L. Writing
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O(Gp(p)) = R[T], we see that dT/(T + 1) is an invariant differential on G, (p)
with antiderivative log,(1+T') (as a formal power series), and therefore we see that
logg @ G(S) — tg(L) is identified with log, : Us — L by choosing the basis T'
(mod T?) for t¢(L). This identification will play a crucial role in the sequel. O

6.3.2 Points and the logarithm: p-divisible groups

While we cannot easily generalize Proposition 6.3.4 to an arbitrary commutative
formal group, the étale quotient of a p-divisible group is nice enough to allow us
to extend our construction. We will show in Lemma 6.3.12 that G¢*(S) is actually
a p-power torsion group. Assume for the moment that this is true. By Corollary
6.2.5, we see that for any S as above, there is an exact sequence

(6.3.1) 0— G°(S) = G(S) — G*(S) — 0,

functorial in G and S. Given this information, we see that we may extend the
logarithm uniquely as follows:

Definition 6.3.10. Given x € G(S), choose m such that p™z € G°(S). Define

log(z) = me log(p™z).
It is clear that this definition is independent of m and that we have given the
unique extension of logg; to a continuous Z,-linear function

log = logg : G(S) = tgo(L).

(In particular, we see that log kills the torsion subgroup G(S)tors of G(S).) This
construction is clearly functorial in S C L and G. In what follows, t¢g & tgo.

Proposition 6.3.11. The logarithm induces an isomorphism of Qp-vector spaces

G(S) 28) Qp — ta(L).

The kernel ker log is precisely G(S)iors, the torsion subgroup. If the valuation on S
is discrete, then log G(S) is contained in a finitely generated S-submodule of te(L).
If L is algebraically closed, then log G(S) = tg(L).

Proof. We will first prove that ker log = G(S)tors- As we noted above (using Lemma
6.3.12 below and (6.3.1)), for any = € G(S) there is some n such that p"z € G°(S).
Since G(S)4ors C kerlog, we clearly need only prove that there exists m such that
p"t™z € B, the open ball where log is an isomorphism. We claim that for y € G°(S),
the sequence p™y tends to 0. Recall that

[p]*(X;) = pX; + higher order terms.

For all y = (y1,.-. ,yn) € G°(S), we have |y;] < 1 for all i. It follows from this
information (and the fact that |p| < 1) that p™y — 0 in G°(S) as m — oo, so there
is some m such that p"*™z € B. Therefore, kerlog = G(S);ors because all torsion
is p-power torsion by Lemma 6.3.12 below.
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In fact, when the valuation on S is discrete, there is a maximal value for |y;| < 1
among all coordinates of all points of G°(S), and therefore there is some N such that
pNa € B for all z € G°(S). On the other hand, we see that log G(S) = log G°(S),
so we conclude that log G(S) C p~VB’, and B’ is a finitely generated S-submodule
of t¢(L) (because S is Noetherian). Thus, when the valuation on S is discrete,
log G(S) is contained in a finitely generated S-submodule of ¢ (L).

When L is algebraically closed, the fact that log G(S) = tg(L) clearly follows
from the fact that G(S) is p-divisible, which we will establish in Lemma 6.3.13
below.

Finally, since it is clear by the local isomorphism of Proposition 6.3.4 that
coker log is p-power torsion, tensoring the exact sequence

0 — kerlog — G(S) log, ta(L) — cokerlog — 0

with Q, over Z, and using the fact that ¢(L) is already a Qp-module yields the
exact sequence

0— G(5) 2@ Qp — ta(L) — 0.
U

It remains to verify that G¢*(S) is p-power torsion and that G(S) is divisible
when L is algebraically closed.

Lemma 6.3.12. The topological group G(S) admits a unique topological Z,-module
structure and G(S)tors = li_n>1G’n(S) functorially in G and S. If G is formally étale,
then G(S) is p-power torsion. The analytic group G°(S) is an open subgroup of G.

Proof. Because the discrete topological R-algebra S/m‘S has a maximal ideal con-
sisting of nilpotents, it is a direct limit of discrete finite Artinian R-algebras T;. By
definition, we have

(6:32) G(T;) = limg G (T5)

for all j. Using (6.3.2), it is easy to see that

(6.3.3) G(S/m'S) = lim G (S/m'S).

We have thus shown that G(S/m’S) consists of p-power torsion elements, with
G (S/m'S) = G(S/mi ) "]

By continuity, it is clear that

(6.3.4) G(S) = lim G(S/m'S),

as topological groups (with each G(S/m’S) discrete), so the topological group G(S)
has a unique compatible topological Z,-module structure and

G(S)p"] = lim G(S/miS)[p"] = lim G (S/m'S) = Gin(S).
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Thus, we find that G(S)tors = G(5)[p™] = lim G, (S5).

Suppose G is formally étale. From our proof of Proposition 3.1.5, we see that
the affine algebra of G, is a product of integer rings in unramified extensions of K,
and it is clear that the map n; : G, (S/m'T1S) — G,(S/m'S) is a bijection for all
i. Therefore, G(S/m'S) = G(S/mS) for all i, and passing to the inverse limit on i
shows that G(S) = G(S/mS) is a discrete p-power torsion group.

It remains to show that G°(S) is open. By functoriality there is a commutative
diagram of continuous maps of topological groups

0——G%(S) ——— G(S) ———— G¥*(S) ——0

b

0 —— G%(S/mS) —— G(S/mS) —— G (S/mS) —— 0.

We have just seen that o is an isomorphism, so ker & C G°(S). By the definition
of the topology on G(S), we see that G°(S) is an open subgroup of G(S). O

Lemma 6.3.13. When L is algebraically closed, G(S) is p-divisible.

Proof. We will prove a more precise statement: given S C L for any completion L
of an algebraic extension of K, and given z € G(S), there is a finite extension L'/L
and y € G(S') such that py = z (and clearly L' is the completion of an algebraic
extension of K).

By (6.3.1), it suffices to check this separately for the connected and étale cases.
In the étale case, the proof of Lemma 6.3.12 shows that G¢*(S) = lim G (S) =
lim G, (S/mS). Writing S/mS as a direct limit of finite local B/m = k-algebras and
using the fact that Gy, is finite over R, we see that G,,(S/mS) = G, (kg), where kg
denotes the residue field of S (which is an algebraic extension of k). But for a separa-
ble closure k; of kg, we know from the étale dictionary that lim Gy, (ks) = (Qp/Z,)"
for some h. Since Gy (ks) = lim p G (k') with &' C ks ranging through finite separa-
ble extensions of kg, we are done if we can show that every finite separable extension
of kg arises as the residue field of the valuation ring in some finite extension L'/L
(which admits a unique extension of the valuation on L). We see this as follows:
given k' /kg, we may lift a minimal polynomial for a primitive element for k£’ over
ks to an irreducible monic polynomial f € S[z]. Letting L’ be the field of fractions
of S[z]/(f(x)), we see that [L' : L] = [k’ : kg] and that the valuation ring S’ of L'
must contain S[z]/(f(z)). We conclude from the standard inequalities of valuation
theory (for valuation rings which are not necessarily discrete, e.g., S) [7, Exercise
10.8] that the residue field of S’ must be k. This settles the étale case.

In the connected case, we recall that [p] : G — G is an isogeny of degree ph' for
some h'. Thus, [p]* : 6(G°) — €(GP) is a finite free R-algebra extension of rank p" .
Therefore, by integrality, embedding S in L we see that any continuous R-algebra
map O(G°) — S extends along [p]* to an R-algebra map €(G°) — L' for a finite
extension L'/L. This extension is automatically continuous: choosing coordinates

X1,...,X, for 0(G), it is easy to see (using the properties of non-archimedean
valuations) that the X; must land in the maximal ideal of the valuation ring S’ of
L. ]
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With this extension to the case of an arbitrary p-divisible group, we have de-
veloped all of the analytic tools which we will need to establish the Hodge-Tate
decomposition of Homz, (T'(G), Ck) for an arbitrary p-divisible group G over our
mixed characteristic (0,p) complete discrete valuation ring R. (We note in passing
that it is not surprising that we should need analysis, as the Hodge decomposition
of the cohomology of an abelian variety in the classical (complex) case is itself an
analytic, rather than an algebraic, fact.)

As a consequence of the analysis in the proof of Lemma 6.3.12, we deduce the
following.

Lemma 6.3.14. The construction G ~ G(S) is naturally a functor from p-Barsotti-
Tate groups over R to topological Zy-modules, natural in G and S. Given a map f :
G — H of p-Barsotti- Tate groups over R, the induced map f°(S) : G°(S) — H(S)
is a map of analytic groups over L, functorial in L.

7 The main results

7.1 The Hodge-Tate decomposition

We assume for the rest of Part II that the residue field £ of our mixed characteristic
(0,p) complete discrete valuation ring R is perfect.

7.1.1 Statements from Part III

In Part III, we will investigate the continuous cohomology of ¥ = Gal(K/K) with
coefficients in Cg. Briefly, we will define a cochain complex consisting of continuous
cochains and we will define H® and H! in the usual manner (using the familiar
Hochschild coboundary maps). The results which we prove are essential for proof
of the Hodge-Tate decomposition. In particular, we will prove:

Fixed Points Theorem (Theorem 10.3.1).
H°(¥%,Ck) = K and dimg H'(¥4,Cg) = 1.

Twisting Theorem (Theorem 10.3.2). If ¢, is the p-adic cyclotomic character
on ¥, then for all n # 0,

HY(¢4,Cx(n)) =0 =HY¥Y,Ck(n)).

(Recall that Ck(n) = Ck(ey) is the twist of Cx by €}.)

Hodge-Tate Lemma. If W is a finite-dimensional Cg-vector space admitting a
continuous semi-linear 4-action, then the natural Cr -linear map W¥¢ @ Cx — W
of 4-modules is injective. In particular, dimgx W9 < oco.

7.1.2 Proof of the Hodge-Tate decomposition

Let D be the ring of integers of Cx with Up = {z € D : |[zr—1| < 1} C D*. Suppose
G is a p-divisible group over R of height h and dimension N. Let T = T(G) and
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TV = T(GY), and let W = Homg, (T,Cg), W" = Homg,(T",Ck) (as Cg-semi-
linear ¥-representations). Note that while TV = Homgz, (T, Z,(1)), it is not the case
with our notation that WY = Homg, (W, Z,(1)).

Before we study the Hodge-Tate decomposition, we will use the logarithm to
show that the dual generic fiber Tate module T actually encodes global information
about G over R. In particular, we will prove

Theorem 7.1.1. There are natural isomorphisms
G(R) *% Homg, (TV,Up)?

of groups and
ta(K) 5 (W)

of K-vector spaces.

The Hodge-Tate decomposition will arise as a corollary of the methods we employ
to prove Theorem 7.1.1. The essential input is Cartier duality, which relates points
of G/ to morphisms G,, — Gy,,. Let us make this more precise:

We see by the definition of Cartier duality that for each n there is an isomorphism
of ¥-modules

(7.1.1) Gy (D) = Homp gps(Gr/p; Gyp) = Homp gps (G ps i /)

by functoriality in D (where the %-action on the right is by base change). This
isomorphism is compatible with change in n, so we get a natural isomorphism

(7.1.2) lim Gy, (D) = Homy, g 1./p(Gp; Gy (p))

compatible with the %-actions. On the other hand, it is easy to see by integrality
that G)/(D) = G)(K), so we see that the left side of (7.1.2) is actually T(GV).
Using Lemma 6.3.14 with S = D gives a map of ¥-modules

~

(7.1.3) T(GY) — Hom(G(D), G, (D)),

where the right side consists of maps G(D) — ém(D) of topological Z,-modules
whose restriction to G°(D) induces a map of analytic groups G°(D) — GQH(D)
(The %-action preserves the analyticity of the maps G°(D) — a%l(D) because the
formal group laws are defined over R).

By functoriality and analyticity, the logarithm gives a map of ¢-modules

~

Hom(G(D), Gu (D)) ~% Home, (t6(Ck ), g, (Ck))-

Writing this more symmetrically and using Example 6.3.9, Proposition 6.3.11, and
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Lemma 6.3.12 gives a functorial diagram of pairings

-
idpav)

(7.1.4) T(GY) x G(D) —— Gy (D) ——— Up
idpavy |log log log,

Diagram (7.1.4) gives rise to a smaller commutative diagram of Z,-linear maps

(7.1.5)
0 > D(G) »G(D) »tq(Cx) — 0

- : P

0—— Homzp (Tv, (UD)tors)  — Homzp (Tv, UD)  — Homzp (Tv, CK) — 0.

log

We see that «g, a, and da are 4-homomorphisms (with respect to the usual action
on Homgz, (-, -)) by chasing the functoralities in diagram (7.1.4). Similarly, we see
that da is Ck-linear. By analyzing (7.1.5), we will prove the following Proposition.

Proposition 7.1.2 (Pairing Proposition). In diagram (7.1.5), g is a bijection
and o and da are injective.

We defer the proof of Proposition 7.1.2 to Section 7.1.3. Let us prove Theorem
7.1.1 using the Pairing Proposition. Note that by the Fixed Points Theorem, G(R) =
G(D)? and tg(K) = tg(Ck)?.

Proof of Theorem 7.1.1. We will prove the Theorem by using the “differential” da to
reduce the question to one of (semi)-linear algebra, where a dimension computation
will suffice to prove the result.

By ¥-equivariance and Proposition 7.1.2, we see that « and da induce injective
maps

ag : G(R) — Homg, (T, Up)?
of groups and
dag : ta(K) — (WY)?

of K-vector spaces. By left-exactness of the fixed-points functor H*(%, -), we see
that coker ar — (coker @)? and coker dag — (coker da)? are injective. But Propo-
sition 7.1.2 and the Snake Lemma show that coker a — coker da is a bijection, so
coker ap — coker dag is injective.
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Therefore, to prove the Theorem it suffices to prove that dapg is surjective. But
dag : tg(K) — Homg, (TV,Ck)? is a K-linear map with dimg t;(K) = dimG,
so it suffices (by the Hodge-Tate Lemma) to prove that dimyx Hom(TV,Cg)Y =
N = dimG. Recall that W and WV are h-dimensional Cg-vector spaces with
semi-linear “-action. If d = dimyx W¥ and d¥ = dimg(WV)?, then we know by
injectivity of dag (in general, i.e., for both G and GY) that N < d and NV < d,
where NV = dim GV. Therefore, by Proposition 6.2.8 we see that h < d + d", and
to show that coker dag = 0, we need only show that d + d" < h.

Since T = Homz, (T, Zy(1)) it is an exercise in algebra to show that there is a
@-equivariant isomorphism

WY = T%@ Homgz, (Z,(1),Ck) = T%@ Ck(-1).

P g

Thus, we get a ¥-equivariant Cg-bilinear pairing
B:W x WY = Cg(-1)

defined by (f,t®«a) — f(t)a. It is easy to see that B is a perfect pairing of Cg-
vector spaces. But W¥ and (WV)? clearly pair into Cx(—1)¥, which vanishes
by the Fixed Points Theorem. Furthermore, the map W% @ x Cx — W given by
scalar multiplication is injective by the Hodge-Tate Lemma. Hence, a d-dimensional
subspace of W annihilates a d"-dimensional subspace of WV. Because B is perfect,
we see that d + d" < dimg, W = h, completing the proof. O

Theorem 7.1.3 (Hodge-Tate decomposition). There is a canonical Cg-linear
4 -equivariant decomposition

Homzp(T, Ck) Ztqv(Ck) ®t;(Ck)(—1).

Proof. Since it is clear that t¢(K) ® x Cx — t¢(Ck) (and similarly for tgv), we see
from the proof of Theorem 7.1.1 and the Hodge-Tate Lemma that da (resp. da")
injects tg(Cg) (resp. tgv(Ck)) onto subspaces of WY and W which are orthogonal
complements for the perfect pairing 8. This says precisely that the pairing B
induces an exact sequence

(7.1.6) 0— th(CK) dLv) W — HOmCK(tg(CK), CK(—l)) = tE(CK)(—l) — 0.

To complete the proof, it remains to show that the sequence (7.1.6) splits uniquely
(compatibly with the ¢-actions). Twisting (7.1.6) by ¢,, we see that it suffices to
show that for any m and n, a sequence of semi-linear Cg-spaces with continuous
semi-linear ¢-actions

(7.1.7) 0—-Cg(1)" =V —=>Ckr—=0

splits uniquely. Since Homg, (Ck, Ck(1)) = Ck(1), the Twisting Theorem shows
that such a splitting is unique if it exists. On the other hand, it is easy to see
that we may form the functor Ext!(-, -) classifying extensions on the category of
finite-dimensional Cg-vector spaces with continuous semi-linear ¢-action and that
Ext' (D V;, D W;) = @ Ext' (V;, W), so we see by the Twisting Theorem that

Ext!(Ck, Cx(1)™) = @ H(¥,Ck(1)) =0,

and the extension splits. O
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7.1.3 Proof of the pairing proposition

Following Tate [11, Proposition 11], we prove the Pairing Proposition in steps.
Step 1. The map «g is bijective. Because char K = 0, we see that there is a natural
isomorphism of ¢-modules

GY(Ck) = Hom(G,(Ck), Gm(Ck))
= Hom(G,(Ck), Mpoo(CK))
= Hom (G, (Ck), (Up)tors)-

Therefore, Cartier duality provides a perfect pairing of abelian groups
(7.1.8) Gn(Ck) X Gy (Ck) = pyun (D) = (Up)iors,

so there is an isomorphism of ¥-modules

(7.1.9) Ga(Cic) S Hom(GY(Crc), (Up)iors)-

Note that T is a finitely generated Z,-module, while (Up)tors is torsion, so any map
TV — (Up)tors must factor through some TV /p"TV, i.e., through some G, (Ck).
Thus, passing to the limit in (7.1.9), we see that there is a natural isomorphism of
%-modules

®(G) = lim Hom(G,, (Ck), (Up)iors) — Hom(T", (Up)sors),

and this is exactly the map «y.
Step 2. The Z,-modules ker o and coker o are Qp-vector spaces. Applying the
Snake Lemma to diagram (7.1.5), we see that ker @« — ker da and coker @ — coker da
are isomorphisms of Z,[%]-modules. Thus, we need only show that da is Q,-linear,
and this follows from functoriality (it is even Cpg-linear).
Step 3. We have G(R) = G(D)? and tq(K) = tq(Ck)?. This is clear from the
Fixed Points Theorem, for C%. = K and DY = R, and the %-action on G(D) (resp.
ta(Ck)) is induced by the action on D (resp. Ck).
Step 4. The map « is injective on G(R). By step 3 and the left-exactness of the
fixed-points functor, we see that ker a|g(r) = (ker a)?. By step 2, we see that ker
is a Q,-vector space, so ker aNG(R) = (ker a) is a Q,-vector space and therefore is
p-divisible. If G is connected then because the valuation on R is discrete, we see (as
in the proof of Proposition 6.3.11) that Np"G(R) = 0, and therefore ker aNG(R) = 0.
If G is arbitrary, then given = € ker « N G(R), we see from Lemma 6.3.12 that
p"z € ker a N G°(R) for some n. Note that the closed immersion G° < G yields an
injection G°(D) < G(D) and a surjection T(G") — T((G°)") (because lim is exact
on the category of finite abelian groups). By the functoriality in G of the formation
of a and the proof of the connected case, we therefore see that p"x =0, so x =0
because ker « has no p-torsion.
Step 5. The map daly, (k) is injective. By steps 1 and 4, along with the Snake
Lemma, we see that daliog g(r) is injective. But Qlog G(R) = tg(K) by Proposition
6.3.11, so step 5 follows because tg(K) is torsion-free.
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Step 6. The map da is injective. We can factorize da as

ta(Ck) Z2te(K)® Cg — Homzp(Tv, CK)g RCxr — Homzp(Tv, Ck).
K K

By step 5, the middle map is an injection, and by the Hodge-Tate Lemma, the last
map is an injection.
Using the Snake Lemma now shows that « is injective, completing the proof.

7.2 The Isogeny Theorem

Let R be a normal Noetherian domain with fraction field K of characteristic different
from p.

Theorem 7.2.1 (Isogeny Theorem). IfG and H are p-Barsotti- Tate groups over
R, then any generic morphism frx : Gx — Hg uniquely extends to a morphism
f:G — H. In other words, the functor G ~ G 1is fully faithful.

Fix a separable closure K of K and let 4 = Gal(K/K).

Corollary 7.2.2. The natural transformation Hom(G,H) — Homg (T(G),T(H))
of bifunctors is an isomorphism.

If R = K, then the Isogeny Theorem is trivial. Furthermore, if char K # 0,
then p € R* so p-Barsotti-Tate groups are formally étale and the Isogeny Theorem
follows from a normalization argument (working locally, completing, and using the
structure of finite étale algebras over a complete discrete valuation ring). Therefore,
we assume in what remains that char K = 0 and R # K.

Theorem 7.2.1 is very similar to the theorem, originally conjectured by Tate
and proven by Faltings, that for abelian varieties A and B over a finitely generated
extension K of Q, the map Homg (A, B) ®z Z, — Homg(T),(A),T,(B)) is an iso-
morphism. In fact, Tate proved Theorem 7.2.1 as part of his attempt to adduce
evidence for his conjecture (and Tate’s work plays an essential role in Faltings’s
proof).

The strategy for proving Theorem 7.2.1 is to deduce it from the apparently
weaker statement:

Proposition 7.2.3. Ifg: G — H is a morphism of p-Barsotti-Tate groups over R
such that the generic fiber map g : Gk — Hpg s an isomorphism, then g is an
isomorphism.

(Beware that Propostion 7.2.3 is false if we replace “isomorphism” by “closed
immersion” or “topologically faithfully flat.”) We will get all of Theorem 7.2.1 from
Proposition 7.2.3 by using a standard graph construction to extend certain generic
fiber p-Barsotti-Tate groups to p-Barsotti-Tate groups over the entire base R via
“closure.” In fact, we will show the following result in Section 7.2.1.

Proposition 7.2.4. Let R be a complete discrete valuation ring. If F is a p-
divisible group over R and M C T(F) is a Zy-direct summand which is a 9-
submodule, then there is a p-divisible group I' over R and a morphism ¢ : ' — F
such that ¢ induces an isomomorphism T(T') = M.
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(Beware that the ¢ in Proposition 7.2.4 does not factor through a closed im-
mersion into F.) Let us show how the Isogeny Theorem reduces to Proposition
7.2.3.

Lemma 7.2.5. Proposition 7.2.3 implies Theorem 7.2.1.

Proof. Let F = G x H. Clearly, T(F) = T(G) x T(H), so letting M be the graph
of the induced map T(fx) : T(G) — T(H), we see that T(F) = M & ({0} x T(H)).
By Proposition 7.2.4, there is a p-Barsotti-Tate group I' over R and a morphism
¢ : T — G x H such that T(¢) : T(T') = M C T(F). But since M is the graph of
T(fx): T(G) = T(H), we see that pj o¢ induces an isomorphism T'(I') — T'(G), and
therefore (p1 o ¢)k is an isomorphism of generic fibers by Proposition 5.2.3. Thus,
Proposition 7.2.3 shows that p; o¢ : I' — G is an isomorphism. By construction, we
see that

Yp=prodo(piog) ' :G—H

is a morphism extending the given morphism fx of generic fibers. Because each
torsion level is flat over R, it is clear that such an extension is unique (A - A®r K
is injective for any flat R-algebra A). O

It remains to prove Proposition 7.2.4 and Proposition 7.2.3.

7.2.1 Extending generic fibers: the proof of Proposition 7.2.4

The main idea of the proof is to take the scheme-theoretic closure in F' of the generic
fiber p-Barsotti-Tate group corresponding to M, but the resulting directed system
of finite R-groups may fail to be a p-Barsotti-Tate group. Therefore, we will need
to alter it slightly without disturbing the generic fiber to produce a p-Barsotti-Tate
group I" and a map [' — F which realizes the injection M — T'(F') on the level of
generic fiber Tate modules. This is a bit delicate because I' usually does not come
from a (system of) closed subgroup(s) of F.

Because M is a Z,-direct summand of T'(F'), we see that M /p"M injects into
T(F)/p"T(F), which means precisely that M corresponds to a closed p-divisible
subgroup E' of the generic fiber Fg. If F = (F,) and E' = (E),), write B,, for the
affine R-algebra of F,, and A/, for the affine K-algebra of E!,. There is a surjective
map u, : B, ®r K — Al corresponding to the generic closed immersion E/ <
F, x Spec K. If we let A, = up(By), an R-subalgebra of A], we see that A, must
be a free R-module because B, is free and R is a principal ideal domain. In fact,
Spec A,, — Spec B,, is precisely the scheme-theoretic closure of the open subscheme
El — (F,)k in F, ((F,)k is open in F, because R is a discrete valuation ring).
Letting F, = Spec A,,, we see by R-flatness that in fact E,, is a closed subgroup of
F, (so Ejy is the trivial group), and it is not hard to see that the closed immersions
F,, = F,11 induce closed immersions F, — Ep 1.

Because (F,) is generically p-Barsotti-Tate , we see that [p] annihilates the R-flat
quotient E, /E, 1 because it annihilates the generic fiber. Therefore, we see that
for all n, [p] induces morphisms ¢y, ; : Fijini1/Eit1 — Eiin/FE; which are generic
isomorphisms. Therefore, if D; is the affine algebra of Ej;;i/FE;, then for each i
P14+ Di — D;yy induces an isomorphism D; @ K 5 Diy1 ® K. If A denotes the
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common affine algebra of the D; ® K, we see by flatness that D; — A is injective,
so we can identify D; with its image in A, where there is a compatible system of
injections D; — D;;1. Therefore, we see that (D;) is an increasing sequence of
finitely generated R-submodules of the finite K-algebra A. But A is étale, so the
normalization of R in A is a finite R-module. Thus, (D;) must stabilize, i.e., there
is ig such that D;y1 = D; for i > i (under the identifications of D; ® K with A). If
we let Ty, = E; 1/ Ei,, we then see that [p] induces a system of group morphisms
Iy, — E,/Ey = E, which are generic isomorphisms. Furthermore, we see that there
are closed immersions i, : I', < [';;11 which correspond on the generic fiber to the
closed immersions E;, — E]_ ;. If we can show that (I',) is p-Barsotti-Tate , the
morphism ¢ : ' - F — F will complete the proof.

By an easy argument with the generic fiber, all we have to check is that i,
identifies I';, with I';,11[p"]. Consider the diagram

[p"]
ny1 == Eiyin+1/Eiy — Eigyni+1/Ei

(7.2.1) la WT

B
Eio-l-n-l-l/Eio-I-n E— Eio-i-l/Eio’

——Toni

where « is the canonical projection, 5 the map induced by [p"], and 7 the canonical
closed immersion. Checking on the generic fiber, we see that (7.2.1) commutes. On
the other hand, by our choice of iy, we see that § is an isomorphism, and therefore
ker[p"] = ker «r, which is nothing more than T',,.

Remark 7.2.6. Tate [11] gives an example due to Serre showing that it is not the
case that ¢ : I' — F is necessarily a closed immersion. ¢

7.2.2 The proof of Proposition 7.2.3

Because R is a normal Noetherian domain, R = NpRp C K as P ranges over the
height one prime ideals of R and each Rp is a discrete valuation ring. In particular,
for finite locally free R-modules M and N in a fixed finite-dimensional K-vector
space, we see that M C N if and only if Mp C Np for all primes P of height one.
Since our goal is to show that fj, : O(H,)x — O(G,)k takes O(H,) into €0(G,)
for all n > 1, it therefore suffices to prove Proposition 7.2.3 for a discrete valuation
ring (R, m, k).

It is clear that there is a faithfully flat extension R’ of R which is a discrete
valuation ring with algebraically closed residue field, and completing R’ produces
a complete discrete valuation ring R” O R which is also faithfully flat over R.
Hence, we may assume that R is complete with algebraically closed residue field. If
p # char k, then G and H must be formally étale over R. Consider the finite stages
gn : G, — H,. Because G,, and H, are étale, looking at our proof of Proposition
3.1.5 shows that €(G,) and O(H,) are exactly products of integer rings in finite
unramified extensions of K. Thus, by an easy integrality argument, we deduce the
Isogeny Theorem in the formally étale case. We are reduced to the difficult case: R
is a complete discrete valuation ring with perfect residue field k of characteristic p.

Let us again view this from the p-Barsotti-Tate viewpoint. In this case, we are
given a family u,, : A, — B, of maps between finite free generically étale R-algebras
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such that u, ® g K is an isomorphism. This certainly implies that u,, is injective.
Because R is a discrete valuation ring (and in particular, a principal ideal domain),
it is easy to see that uy, is an isomorphism if and only if discy,, /g = discp, /g (these
discriminant ideals being non-zero because G, and H, are generically étale). By
Proposition 6.2.12, disc G,, depends only upon n, dim G, and ht G, and similarly for
disc H,,. But by Theorem 7.1.3 and the Twisting Theorem, T'(G) and T'(H) encode
the dimensions of G and H respectively, and since f is a generic isomorphism,
dim G = dim H. Similarly, it is trivial that generically isomorphic p-divisible groups
have equal heights. Therefore, we see that u, is an isomorphism for all n.

Remarks 7.2.7. 1) As we will see in Part 111, without Serre’s geometric local class
field theory (which is needed instead of the usual local class field theory to prove
the Twisting Theorem if the perfect residue field of R is not finite), the proof we
have given for Theorem 7.1.3 (and hence Theorem 7.2.1) only works for Noetherian
domains R with finite residue field at the height one primes whose residue charac-
teristic is p. This includes integer rings of number fields and p-adic fields (finite
extensions of Q).

2) In the case where char K = p, we can reduce just as in the beginning of the
proof of Proposition 7.2.3 to the case where R = k[t] for an algebraically closed
field k of characteristic p (by the structure theorem for equicharacteristic complete
discrete valuation rings). Unfortunately, the analytic tools Tate used in his proof
(e.g., the logarithm) are only available in characteristic zero. The equicharacteristic
case remained unsolved until 1996, when de Jong proved it using techniques of
crystalline cohomology. ¢
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Part III
Galois Modules

8 Introduction

Let A be a mixed characteristic complete discrete valuation ring of absolute ramifi-
cation index e with perfect residue field & of characteristic p > 0 and fraction field
K (a local field). Write ¢ for the absolute Galois group of K. These notations (in
addition to the notations introduced at the beginning of this thesis) will remain in
effect throughout this Part.

The study of étale groups in Part I showed that the generic fiber of a (formal or
finite) group scheme over A may be studied as a Galois module, or, conversely, that
a Galois module may be viewed as a geometric object, namely, an étale group over
K. Part II showed that for a p-divisible group G over A, the generic fiber Galois
representation decomposes after extending scalars to Ck in a fashion reminiscent of
the Hodge decomposition of the de Rham cohomology of a complex abelian variety.
In other words, the geometry of an abelian scheme over A (e.g., an elliptic curve
with good reduction) constrains the generic fiber Tate module representation of ¢.
This Part will focus on the cohomological issues which arose in Section 7.1.1 (and
provide the proofs for the facts which are necessary to Part II).

Call M a topological 4-module if M is a ¥-module with a topology such that
4 x M — M is continuous. Given a topological ¥-module M, define the continuous
cohomology to be the cohomology of the complex C*(¥, M) given by continuous
cochains f : 4" — M. (This is usually not a derived functor.) On the rare occasions
when the topology on M is discrete, the complex will be notated Cj;.. and the
cohomology groups will be written H};;... Where necessary, the r-cocycles and r-
coboundaries are denoted Z" (¥, M) and B" (¥, M), respectively.

When M has the additional structure of R-module for some ring R and the
@-action is R-linear, the continuous cohomology naturally lives in the category of
R-modules. Especially important for us will be semi-linear representations of ¢ on
F-modules for topological rings F' (usually subfields of Cg) admitting semi-linear ¢-
actions. Letting F'{¥} denote the “semi-linear group ring” (such that for « € F and
g €Y, ga =g(a)g), aleft F{4}-module V is precisely an F-module with a semi-
linear left ¢-action. When V is a topological F-module with an F{¥ }-structure
such that ¢ acts continuously, we say that V' is a topological F{%}-module (we do
not put a topology on the ring F{¥}).

We may produce inflation and restriction maps by composing cochains with
quotient maps ¥4 — ¥/ by closed groups or restricting cochains to closed sub-
groups . C ¢4. The direct computational proof of the exactness of the low-degree
inflation-restriction sequence carries over to continuous cohomology: if 77 C ¥ is a
closed subgroup and M is a topological 4-module, then there is an exact sequence

0— HY Y/ #,M7) - H\(Y,M) — H (A, M).

Asusual, H*(¢4, M) = M¥ and if M is a topological R{%}-module then H! (¢, M)
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classifies topological short exact sequences
0+M-—-N-—=-1—=0

up to isomorphism, i.e., continuous extension classes of 1 by M, where 1 is the
trivial semi-linear representation of ¢4 on R.
The fundamental result of this Part is that

(8.0.2) H'(¥%,Ck(1)) =0,
which shows that topological Cx{¥ }-module extensions of the form
E:0-Cg -V >Cg(-1)"—=0

are split.
We will also show that twisting by €, and taking fixed points allows us to recover
the splitting of an extension such as E. The fundamental result in this direction is

0 0 if n #0;
(8.0.3) H(4,Ck(n)) = {K 7 0.
Thus, for example, given a topological sequence E, we can recover m (resp. n)
by computing dimg V¥ (resp. dimg V(1)¥). (By combining these two pieces of
information, we can recover the splitting.) This shows that if G is a p-Barsotti-Tate
group over A, then dimG = dimx Homg, (T(G),Ck)(1)?, so T(G) “knows” the
dimension of G.

The goal of this Part is two-fold: first, to prove (8.0.2) and (8.0.3), which will be
done in slightly greater generality than is stated here (and which will be completed
in Section 10.3); second, to give some indication of the general properties shared by
Galois modules which admit “Hodge-Tate decompositions” (e.g., the generic fiber
Tate module of a p-Barsotti-Tate group). To motivate the discussion, we will carry
out these tasks in the reverse order.

9 Modules of Hodge-Tate type

Given a field F' with a non-archimedean valuation, Ar will denote the ring of in-
tegers. For the fixed base field K the ring of integers may also be denoted simply
by A, depending upon the context. These conventions will hold throughout the
remainder of Part III.

9.1 The action

It is a standard result that the valuation on K extends uniquely to (a non-discrete
valuation on) K and that 4 = Gal(K/K) acts on K by isometries with respect to
this metric. It is also well known [4, Chapter III, §4] that K is not complete, but
that its completion Cy is algebraically closed. By uniform continuity, the ¢-action
extends to an isometric action on Cg.
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Lemma 9.1.1. Let X be the completion of any algebraic extension L of K. If
X has the valuation topology and ¥4 the usual profinite topology, then the action
9 x X — X is continuous.

Proof. Tt suffices to show that given a point z € X, the set of s € ¢ which stabilize
an arbitrarily small open ball around z is open. Because L is dense in X, given n
there is an @ € L and a 8 € Ax such that £ may be written as a + p”5. By the
definition of the Krull topology, « is fixed by some open subgroup # C ¢, so H#
stabilizes the ball z + p"Ax. O

This complements the familiar result from infinite Galois Theory that the action
¢ x K — K is continuous when K has the discrete topology.

9.2 The Hodge-Tate property

Given a ring R with a ¢-action and an R{¥}-module M, we may consider the
action of ¢ twisted by a multiplicative character y : ¢ — R*. It is easy to see that
M(x) = R(x) ®r M as an R{¥}-module, and that there is a natural isomorphism
M(x1)(x2) = M(x1x2).- When R is topologized such that the action 4 x R — R is
continuous and x is continuous, twisting a topological R{¥ }-module by x produces
another topological R{¥ }-module.

Suppose V is a finite-dimensional Cg-vector space admitting a semi-linear con-
tinuous “-action. Since the underlying spaces of V and V(x ') are the same,
Vx & V(x 1? is canonically a sub-K-vector space of V. Explicitly, VX is the set
of v € V such that s(v) = x(s)v for all s € 4. There is a natural Cg{¥ }-linear
map

CkVX—=>V
K

given by scalar multiplication, where Cx ® g VX is given the obvious Cx{¥ }-module
structure. .

Fixing a choice of character x, let V' (resp. Vi]) denote VX' (resp. Cx ®5 V7).
There is certainly a Cx{¥}-module map O, : @, 7 V[i] = V. For a certain class
of characters, we can show that G)%(/ is injective. This is quite a strong statement,
as in general we cannot even be sure that any V* has finite K-dimension.

Definition 9.2.1. Let x : 4 — A* be a continuous multiplicative character. If the
fixed field of x is a totally ramified Zp-extension of a finite subextension Ky /K of
K, then x will be called ramified.

The p-adic cyclotomic character €, is the most important example of a ramified
character (see Lemma 10.1.3). If x is ramified then x" is also ramified, for im x"
is infinite and any sub-Zj-extension of a ramified Z,-extension is itself ramified.
Furthermore, if y is ramified and .7 is an open subgroup of ¢, then x| is ramified.
(See Section 10.1 for a brief discussion of Z,-extensions.)

Using the continuous cohomology introduced in Section 8, we will prove two
essential results in Section 10.3. Because we will use these results in this section,
we give the statements here.
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Fixed Points Theorem (Theorem 10.3.1).
H*(¥4,Cx) = K and dimg H'(¥4,Cxk) = 1.
Twisting Theorem (Theorem 10.3.2). If x is ramified, then
H(¢,Ck(x)) = 0= H'(¥,Ck(x))-

Using these Theorems, we prove a Lemma which is fundamental to the rest of
this section.

Lemma 9.2.2. The map O : @ V[i] — V is injective if x is ramified.

Proof. For each i, let {a;;} be a (possibly infinite) K-basis for V?, viewed as a
K-subspace of V. If @’é is not injective, then there is some linear dependence
L =3 ¢ijjoi; = 0 where at least one ¢;; # 0 and a minimal number of coefficients
are non-zero. Without loss of generality, we may assume that c;,j, = 1 for some
pair of indices. Applying s € ¢ to the relation L yields

ZS(Cij)Xi(S)Oéij =0.

i7j

Now, L — s(L)/x"™(s) = 0 gives another linear dependence with strictly fewer non-
zero coefficients because ¢;;, = 1. By minimality, s(L) = x"(s)L for all s € .
Expanding this out and using linear independence of the «;;, it must be case that

s(eij)x'(s) = x"(s)cij
for all i and j. In other words, ¢;; € HY(¢, Ck (x*~)). By Theorem 10.3.2, ¢;; = 0
unless ¢ = g, in which case ¢;;; € K by Theorem 10.3.1(1). But the «;,; are K-
linearly independent by construction, so all of the coefficients must vanish, resulting
in a contradiction. Therefore, no such dependence is possible, and the Lemma, is
proven. ]

Remarks 9.2.3. 1) In practice, the chosen character will be the p-adic cyclotomic
character e, (cf. Section 10.1). In general, if x : 4 — Z is any continuous multi-
plicative character of ¢ with infinite image, ¢/ ker xy must contain an open subgroup
topologically isomorphic to Z,. (This follows because im ¥ is an infinite closed sub-
group of Z, there is a continuous split surjection Z; — Z, with finite kernel, and
any closed subgroup of Z, is an ideal.) Thus, the fixed field of ker x is always a
Z,-extension of a finite subextension Ky/K; the hypothesis of Lemma 9.2.2 sim-
ply adds the condition that this Z,-extension be ramified. This property separates
ramified characters x from arbitrary continuous characters with infinite image.

2) Because O, is injective, the infinite direct sum in the definition of ©F actually
has only finitely many non-zero terms and ), dimg V¢ < dimg, V. This is the
essential point of choosing a character of infinite order. If y were a continuous
character to the discrete topology of K* (so that imy would be finite, among other
things), Hilbert’s Theorem 90 (i.e., HY (¢, K*) = 0) shows that Cx(x") = Ck
as Cx{¥}-modules for all n, so twisting by different powers of x does not pick out
distinct K-subspaces of Cg. ¢
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If T is the Tate module of a p-divisible group over A and x = ¢p, let T' =
Homgz,(T,Ck) as a Cg{¥}-module. Theorem 7.1.3 of Part II shows that 7" =
T'0] ® T'[1] as a Cx{¥}-module. In other words, not only does the injection of
Lemma 9.2.2 hold, but the map G);f’, is actually surjective, and this corresponds
precisely to the “Hodge-like” decomposition of 7”. This motivates the following
definition.

Definition 9.2.4. Given a ramified character x, a Cx{¥}-module V is of x-Hodge-
Tate type (or simply is x-Hodge-Tate or Hodge- Tate for x) if @’é is a bijection. More
generally, given a finite dimensional K-vector space V' with a linear ¥-action, V will
be called pre-x-Hodge- Tute if the semi-linear representation Cx ® g V' is of x-Hodge-
Tate type. The x will be dropped if it is clear from the context. (The standard case

is x = ¢p.)

9.2.1 An alternative point of view

Instead of looking at the Hodge-Tate property “one twist at a time,” consider the
following reformulation of the Hodge-Tate condition. Let x be a ramified character,
and define Bur(x) = D,z Cx(x"). Given a topological K[¢]-module V' with
finite K-dimension, Lemma 9.2.2 shows that there is an injection

Brr(x) @ Bur(x) ® V)Y < Bur(x) @V
K K K

which is functorial in V. Let DY denote the functor sending V to (Bur(x) ®x V)?;
in the case where V is a topological Cg{¥}-module, we will write DX (V) =
(Bur(x) ®cy V)?. In either case D (V) is a finite-dimensional K-vector space;
writing Vo,, = Cxk®xV when V is a K-vector space and Vg, = V when V is
a Ck-vector space, Lemma 9.2.2 shows that dimx Df+(V) < dimg,, Vo,.. We see
that V is xy-Hodge-Tate or x-pre-Hodge-Tate (depending upon the scalar field) if and
only if dimg D1 (V) = dimg,, V.- More functorially, If Vi, denotes the func-
tor V ~ Bur(x) ®x Dp(V) and BX denotes the functor V ~ Bur(x) ®cy Vo,
Lemma 9.2.2 shows that there is an injection of functors ¢ : Vi < BX. The con-
dition that V' be x-Hodge-Tate is then equivalent to the condition that (V') be an
isomorphism.

9.2.2 Basic properties of Hodge-Tate modules

In this section, we consider the relationship between the Hodge-Tate condition and
certain natural constructions of topological Cx{% }-modules from other topological
Ck{¥}-modules. We implicitly assume in what follows that all Cx{¥}-modules
have finite Cg-dimension.

Given two Cg{¥}-modules V and W, several other Cx{%¥ }-modules may nat-
urally be constructed out of them:

(i) VV = Homg, (V,Ck) with action (s.¢)(v) = s(é(s~(v)));
(ii) V ®c, W with action s.(v® w) = s(v) ® s(w) (extended by semi-linearity);

(iii) Homg, (V, W) with action (s.¢)(v) = s(¢(s71(v))).
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It is easy to check that the action on VY ®c, W is identified with the action on
Homg, (V, W) under the natural isomorphism V" ®c, W = Homg, (V, W).

Lemma 9.2.5. Suppose V and W are topological Cg{¥}-modules. There are nat-
ural injections

(1) Dyr(V) ® D (W) < Dy (V@ W)
(2) Dir(V)Y < Dp(VY)
(3) Homg (Djyp(V), Diyr(W)) — Dijp(Home, (V, W)).

Proof. Part (1) is clear. To prove (2), it suffices show that if ¢ € (V*)V (the K-
vector space dual), then ¢ naturally defines an element of (V) *. But this is clear
by a simple computation. Part (3) follows from parts (1) and (2). O

Fix a ramified character y. In what follows, “Hodge-Tate” will mean “y-Hodge-
Tate.”

Lemma 9.2.6. IfV and W are of Hodge-Tate type, then
(1) VV is of Hodge-Tate type;
(2) V®c, W is of Hodge-Tate type;
(3) Homg, (V, W) is of Hodge-Tate type.

Proof. This is a trivial consequence of Lemma 9.2.5, and it shows the usefulness of
having defined the functor Dy. O

Thus, all of the “natural constructions” preserve the Hodge-Tate condition. Here
is an interesting example of a non-Hodge-Tate Cg{¥ }-module which may be con-
structed “non-algebraically” from one which is Hodge-Tate.

Example 9.2.7. Consider the p-adic cyclotomic character ¢, : 4 — Z,. Using the
p-adic logarithm, write Z, = G x Z, for some finite group G (which depends upon
p). Because G is finite, there is some n, such that 521’ takes values in the open
subgroup of Z; isomorphic to Z,. Let i € Z, — Z, and define x = (ep”)". Form the
Cx{¥}-module Ck(x). For every integer n, xe, remains ramified, and therefore,
by Theorem 10.3.2,

Cx(x)(n)? = CK(XEZ)g =0.

So, starting with a Hodge-Tate module Ck (1), performing a very “non-algebraic”
twisting construction yields a non-Hodge-Tate module. Part II gives evidence that
this unnatural construction does not arise algebro-geometrically. O

Proposition 9.2.8. If V is of Hodge-Tate type then

Homg, (¢} (V, W) 2 [ [ Home, (¢} (V[i], W[i]) = [ [ Homg (VF, W7).
i€Z IEZ

In particular, dimg Homg, 4y (V, W) < 0.
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Proof. Because V = @V (i) as Cg{¥}-modules and only finitely many summands
are non-zero, there is a natural isomorphism

Homg,, (4}(V, W) — [ [ Home, (¢} (V[i], W)
i€z

given by the product of the restriction maps f — f[y;). But it is clear from Cx{¥}-
linearity that the natural injection

HomcK{g}(V[i], W[Z]) — HomcK{g} (V[Z], W)

is an isomorphism.
To complete the proof, it suffices to show that the natural map

Hompg (V',W') — Homg,, (¢ (V[i], W[i])
is an isomorphism, and this reduces to showing that the natural map

Hompg (K (x'), K (x') = Home,e1(Cx (x'), Cx (X))
is an isomorphism. But Homg (K (x*), K(x*)) is just K and it is easy to see that
Homc, 1} (Ck (X'), Ck (X)) = C% = K
by Theorem 10.3.1. U

Pre-Hodge-Tate modules are not as easily classified as those of Hodge-Tate type
because some information is lost upon extending scalars to Cg, as the following
example demonstrates concretely.

9.2.3 An example

In this example we work with continuous cohomology. The group U C A* of
principal units is defined to be the kernel of the reduction map A% — k*.

Lemma 9.2.9. Let & be a profinite group, and M a normed Qp-vector space with
a continuous Qp-linear 4-action such that & preserves the open unit ball N C M.
For all r > 0, the natural map of Qp-vector spaces

Q@ H'(4,N) = H'(¢, M)

is an isomorphism. In particular, H' (¢, K(x)) = Qp ®z, H' (¥, A(x)).

Proof. When r = 0, this follows from the fact that the ¥-action is Q,-linear. Now
suppose r > 1. By the compactness of ¢4, given any cochain f : 4" — M there is
some n > 0 such that the image of f lies in p—lnN . If f is a coboundary, then there
is some continuous g such that f = dg. But then, again by compactness of ¢4, there
is some m > n such that g takes values in meN. Thus, any element of H" (¥, [%N)
which maps to a coboundary in M maps to one in meN for some m. The net effect
of this is that

H'(4, M) = limH' (7, - N).
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To prove the Lemma, it therefore suffices to show that the natural map
L p—lnzp%@ H'(4,N) = H'(¥, = N)
P
is an isomorphism. Note that every element of I%Zp ®z, HY(4,N) may be written

in the form p—ln ®z,[f] for some cocycle f (where the brackets denote the equivalence
class). The map ¢ simply sends 1% ®z,[f] to [ f]. If there is some #N—valued

pn
continuous (r + 1)-cochain g such that p—lnf = dg, then f = 0(p"g), and therefore
[f] = 0, so ¢ is injective. On the other hand, given an r-cocycle f : 4" — #N,
[f] = L(p% ®z,[p" f]), and therefore ¢ is surjective. O

Lemma 9.2.10. Let N be a topological Z,[¥]-module which is linearly topologized
and complete as a Zy-module. Suppose there is a countable cofinal set Ny O N D

of open submodules, each of which is stabilized by 4. For any r > 1, if
H'. 1(4,N/N;) = 0 for all i then natural map of Zyp-modules

disc
¢ : Hr(gaN) - m ﬁisc(gaN/Ni)
s an isomorphism.

Proof. If (f;) is a representative of an element of the inverse limit, then there is
a coboundary g such that fy(s) = fi(s) + g(s) (mod Ny) for all s. Replacing fo
by fo — g and continuing inductively in this manner produces a system of cochains
representing the same element in the inverse system of cohomology groups such that
for all ¢ > j and all s € ¢4, fi(s) = f;j(s) (mod N;). By the completeness of N,
there is a cochain f : 4 — N such that f = f; (mod N;) for all 7. Because N is
separated, f satisfies the cocycle condition and therefore ¢([f]) = (f;).
Furthermore, we claim that if a cochain f is a coboundary modulo N; for all ¢
then it is a coboundary. Indeed, suppose f = dg; (mod N;) for some coboundaries
dgi. By assumption, we see that go = g1 + §f1 (mod N;) for some cochain fi.
Replacing g2 by g2 — df1 yields a cochain g, such that g5 = ¢; (mod Ny) and
dgh = 0g2 = f (mod Ny). Continuing in this manner (and renaming) produces a
system of cochains g; such that g;11 = ¢; (mod N;) and f = dg; (mod N;) for all i.
By completeness there is some cochain g : 4" — N such that f = dg (mod N;) for
all 7, which means that f = dg by separatedness. Thus, ¢ is injective. U

Remark 9.2.11. We will only apply Lemma 9.2.10 in the case where r = 1, and in
our application the vanishing of the discrete zeroth cohomology is clear. ¢

Lemma 9.2.12. There is a natural short exact sequence of K-vector spaces

0+ KoU—H(4,K(1)) = K — 0.
VA

P
In particular, H (4, K (1)) # 0.
Proof. By Lemma 9.2.9,

HY(9,K(1)) = Qo HY(Z, A(1)).
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Furthermore, since A is finite and free over Z,, it is easy to see that the natural
map

A@Hl(g Z,(1)) — HY (¥, A(1))

p

is an isomorphism (recall that ¢ is the Galois group of K, not of Q). Finally,
Lemma 9.2.10 shows that

HY (Y, Zy( y_ng )/p"Z,(1 ;J_ngp)
By Kummer Theory, there is an isomorphism
K*[(K*)" = HY Y, pn)

which is compatible with the quotient maps in the system K * /(K *)P" and the maps
Hyn — pyn-1 induced by the pth power map. On the other hand, there is an inverse
system of short exact sequences

1= U/UP" — K*/(K*)"" = Z/p"Z — 0

with surjective transition maps. Passing the inverse limit and using the Mittag-
Lefler condition gives an exact sequence

1 - U —HYY,Z,(1)) = Z, — 0

of Z,-modules. Now, Q, ®z, A = K, so the Lemma follows by flatness after tensor-
ing through with K. O

It is now possible to give an indication of how much information gets lost by
extending scalars on a pre-Hodge-Tate K[¥]-module. Choose a continuous 1-cocycle
¢: % — K(1) which represents a non-trivial cohomology class (cf. Lemma 9.2.12).
Let V be a two-dimensional K-space with a fixed basis e1, e3, and let ¢4 act by the

(5 3)

Since ¢ is a continuous cocycle, this gives a continuous left action of K[¥4] on V.
The topological exact sequence of K[¥4]-modules

matrices

S:0—=e—=V—=>1-0

is non-split, for otherwise ¢ would be a continuous coboundary. Upon extending
scalars to Cg, Theorem 10.3.2 below shows that the sequence S splits, and therefore
V is pre-Hodge-Tate.

Thus, even though V' (over K) may not may not have an especially obvious
structure, its isomorphism class after extending scalars to C g is uniquely determined
by the sequence of numbers which may be read off after twisting Cx ®x V by
various powers of €,. However, such a massive scalar extension has disadvantages
(cf. Proposition 10.3.4 and Remark 10.3.7), and it would be nice to find a refinement
of the Hodge-Tate condition.

Proving the results used in Section 9.2 will occupy the remainder of this Part.
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10 The ¥-action on Cg

10.1 Analysis of Z,-extensions
10.1.1 Existence of Z,-extensions

Definition 10.1.1. A Z,-ezstension of a field E is a Galois extension L/E with
Galois group topologically isomorphic to Z,,.

As usual, given a Z,-extension E/E, the filtration Z, D pZ, D p*Z, D --- D0
corresponds to a tower £ = Fy C E| C --- C FE4 of fixed fields. By infinite Galois
theory this tower is in fact the complete lattice of finite sub-extensions of K, all
of which are Galois because every subgroup of an abelian group is normal. The
fact that this lattice is a chain implies that every Z,-extension is either unramified
or corresponds to a finite unramified extension followed by a totally ramified Z,-
extension, since p"Z, = Zy.

Lemma 10.1.2. Let F — L be an isometric embedding of local fields of residue
characteristic p > 0. If Fy, is a ramified Zy,-extension of F', then the quotient fields
of Foo ®F L by its mazimal ideals are ramified Z,-extensions of L.

Proof. Fixing algebraic closures F of F and L if L, it suffices to prove that for
(necessarily isometric) embeddings F,, < F < L, the compositum Fj, L has Galois
group Z,. Because L is a local field, the ramification index of L/F is finite, and this
implies that L N F, = F,, for some n < 0o because Fy,/F' is ramified. But then L
and F, are linearly disjoint over F},, so there is a topological isomorphism

Gal(FL/L) = Gal(Foo / F) = Z,,.
It is clear that FixoL/L must be ramified. O

By standard results [10, Chapter II, §5], there is a local field F' of absolute
ramification index 1 such that K is a finite totally ramified extension of F. To
establish the existence of a ramified Z,-extension of K, it suffices by Lemma 10.1.2
to find a ramified Z,-extension for local fields of absolute ramification index 1.

Lemma 10.1.3. If F is a local field of absolute ramification index 1, then F admits
a ramified Z,-extension. In fact, the p-adic cyclotomic character €, is ramified.

Proof. Let F(p,) denote the totally ramified extension of F' given by adjoining all
p-power roots of unity. It is easy to prove using the Eisenstein irreducibility criterion
that the cyclotomic polynomials ®,»(x) are irreducible over F'. An elementary order
calculation then shows that Gal(F(u,n)/F) = (Zy/p"Zy,)*, which in turn implies
that there is a topological isomorphism Gal(F(p,~)/F) = Z,. Using the p-adic
logarithm shows that there is a canonical continuous split surjection Z,; — Z; with
finite kernel. Thus, F'(p,)/F is finite over a totally ramified Z,-extension (the
cyclotomic Z,-extension) of F.

On the other hand, the restriction map ¥ — Gal(F(p,e)/F) = Z; is just the
p-adic cyclotomic character, and the splitting of the surjection Z;,( — 7, shows that
the fixed field of kere, is a totally ramified Z,-extension of a finite subextension,
i.e., that ¢, is ramified. (That 5p|Gal( &/K) 1s ramified follows because Gal(K/K) is

an open subgroup of Gal(K/F).) O
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Remark 10.1.4. It is not too hard to verify that F(p,~) = F ®q, Qp(ty=), and
that the Zj-extension F, constructed in Lemma 10.1.3 is just tensor product over
Q, of F' with the subextension Q,C,yd C Qp(mpe) given by the p-adic logarithm, as
in Lemma, 10.1.3. The Z,-extensions of K coming from Fy, are just the factor fields
of the finite Q5Y“-algebra K ®q, Q5. ¢

10.1.2 The absolute trace

Further study of Z,-extensions requires some tools constructed by local class field
theory. Fix a Zj-extension K. /K. The goal of this section is to construct a
continuous function from K., to K, the absolute trace, which will be useful in
computing cohomology for g = Gal(K/K) acting on the completion X of K.
Denote the fixed field of p"Z, C g by K,, and let A, C K, be the ring of integers,
with maximal ideal m,. Let D, = D, /x denote the different of Af,, over A; this
is an ideal of Ag,. Where necessary, o denotes a topological generator of the Galois
group g = Z,. In what follows, the valuation v is taken to be normalized on the
base field K.

Definition 10.1.5. Let L be a field of characteristic 0 and let Lo, /L be an algebraic
extension. Given a € L, define the absolute trace associated to Lo, /L to be

tla) = ﬁ Trpp(a),

where L' is any finite subextension of L., /L containing «. By transitivity of the
trace, t(«) is independent of the choice of L' and is an L-linear operator on L.

Proposition 10.1.6. There a constant ¢ (independent of n) and a bounded sequence
(an) such that v(D,) = (en +c+ p "ay) - €, where e = 1 if Koo/ K is ramified and
€ = 0 otherwise.

Proof. When K, /K is unramified, the result is clear. Suppose that the extension
is ramified. Passing to a finite subextension (and adjusting finitely many of the
constants a,), we may assume by the transitivity of the different that K. /K is
totally ramified.

If L/K is finite, recall the formula [10, p. 64]

(10.1.1) vk(Dr/x) = ep ) > _(1Gil = 1),
=0

where (G;) is the sequence of ramification groups contained in the Galois group
G = Gal(L/K) and ek is the ramification index of L/K. For our purposes,
the “upper numbering” of the ramification groups [10, Chapter IV] is more useful
because of its compatibility with quotients. To rewrite this formula using the upper
numbering we use calculus. If ¢ is the Herbrand function, so that G = Gy,
we know that outside of a discrete set ¢ is differentiable with derivative [G° : G*].
Equation (10.1.1) can be written as the integral

oo

vk (D) = e / (1G] - 1) dv,

-1
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and making the change of variable v = 1 (u) yields
|G°

o0 G
— o1 w1y =21
vk (D) =e /_1 (IG*| 1)|GM| dp

0 1
= el/ (1 — —) G| dp.
L\ ) €

In the case where L = K, the ramification assumption on K, means that
|G| = e, so

(10.1.2) vg (D) = /o: (1 - ﬁ) dp.

The integrand is a step function, so to integrate it we need to determine where the
jumps occur. The fundamental result in this direction is the Hasse-Arf Theorem,
which states that the jumps occur at integer values. Since K, /K is a Z,-extension,
gn = Gal(K,/K) = Z/p"Z. By the definition of the upper numbering (and the
obvious inverse limits), gtg, = gh. Let t,, denote the integer where the upper
ramification jumps from p™ 'g to p™g. If t,,p1 — t,, = e for sufficiently large m,
then for {5 = —1 and n > m we have

(D) = (t1 — to) (1 - Z%) +(ts— 1) <1 _ pn11> L

1 1 1
+e<1_pnm +1_pn7m71 ++1_I>
1 1
(10.1.3) = (tm —to) — [ (1 — to)ﬁ A (b — tm—l)pin_m_i_l +

1 1
en—em—e(pnm+pnml+---+l>

p_
=en+c+p "ay.

When n < m, this calculation is nonsense, but for those finitely many values we
may adjust the a,, to make the formula valid.

Thus, to establish the Proposition, it suffices to demonstrate that the distance
tm —tm—1 between the jumps “stabilizes” to e as m increases. The proof given below
works in the case where the residue field of K is finite. Other cases may be deduced
from the case of an algebraically closed residue field (Serre’s “geometric local class
field theory”) after changing the base to the completion of the maximal unramified
extension of K (recall that K, /K is totally ramified). The methods for handling
this case will not be touched upon in this thesis.

By the assumption that the residue field k is finite, it is easy to see that K is
a finite extension of Q, with ramification index e, the absolute ramification index
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of K. If m is a uniformizer for Ax and « is a lift of a generator for k over F, then
A is a free Z,-module with basis {a'n? :0<i< f—1,0<j <e—1}, where
[ =1k:Fp.

The reciprocity isomorphism of local class field theory can be used to relate the
natural filtration U? = 1 + 7" A of the group of units A% with the filtration of
g by the sequence of ramification groups with the upper numbering. In particular,
Uy is taken onto g™ [10, Chapter XV, §2, Theorem 2]. On the other hand, for
m > e/(p — 1), the (isometric) p-adic logarithm yields an isomorphism U} = Ag
such that the filtration Ug D UZL'H D .-+ corresponds to the filtration Ax D
TAx D w2 Ak D ---. Since g™ = g, for large enough m the reciprocity isomorphism
is identified with a continuous surjection f : Ax — Z,,.

Let g;; denote the basis element o'nl for Ak over Z,. The index j will be
taken from the set {0,1,... ,e — 1}, viewed as representatives for Z/eZ. It is clear
that 7g;; = p°gi j+1, where ¢ = |(j + 1)/e]. If jo is the minimal index such that
there is some 4o with f(gi,.j,) & PZp, then replacing Ax by m/° A and rescaling,
we may clearly assume that there is some iy such that f(gi,,0) & pZp. But then
f(m7A) = pZ, for all j = 1,... e because m’g; _; = pgio, and f(pgi,0) & p*Z, for
j = e. Rescaling and proceeding inductively shows that the remaining jumps in the
ramification filtration are equally spaced e integers apart. O

Corollary 10.1.7. The absolute trace is continuous.

Proof. By linearity, it suffices to produce a constant A such that |t(z)| < A|z| for all
7 € K. The estimate established in Proposition 10.1.6 shows that v(Dg, ,, /k,) =
(e4+p "by)-€, where € is 0 or 1 depending upon ramification. Given fractional ideals
a C Kyy1 and b C K, Trg, /. (a) C b if and only if a C b’D;{iH /., Hence, if
DKpir/Kn = mgﬂ then Trg, . /K, (mflﬂ) =mj,, where j = [(i +d)/p] [10, Chapter
I11, §3, Prop. 7]. It is easy to see that given any constant B, there is an a < 0 such
that

. B . B
(10.1.4) ep" 1 —ap ) +i > ttet b +1> [ﬂ-‘
p p

for all n. Since b, is bounded, say by B, and (p) = mzpl, (10.1.4) shows that

(10.1.5) | Trge, 1/, ()] < ol " |z

for all z € K, 1. (Using —e for B shows (10.1.5) for the unramified case, i.e., € = 0.)
Letting ¢ = ap/(p — 1) and using transitivity of the trace, we find that

| Tri, /xc (@)] < |p[" |2
for all z € K, so taking A = |p| ¢ shows that |t(z)| < A|z|. O

Corollary 10.1.8. There is a constant d > 0 such that for all x € K and all
n >0,

(10.1.6) |z — p"t(z)| < d|o”" z — z|.
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Proof. It will suffice to prove the Corollary for o as long as d is independent of n.
This corresponds to replacing K by K, as the base field, making this result “base
field independent.”

The first thing we will prove is an “approximation” of (10.1.6): there is a constant
¢ independent of n such that for z € K41,

(10.1.7) |z —p~! Trg, .. /K, (T)] < clo?"x — x|.

.. n
Writing 7 = 0P, we have

p—1 p—1
pr — Trg, /K, (%) = pT — ZTZZE = Z(l — 7",
i=0 i=0

But (1—7) divides (1—7%) for every i > 1 (and the i = 0 term vanishes), so the right
side is a sum of conjugates of (1 —7)z. Since all conjugates of (1 —7)z have the same
valuation it follows by the ultrametric property that |pz—Trg, ., /k, (2)| < [(1-7)z],
so one can even take ¢ = |p|~! in (10.1.7).

The proof of the Corollary follows by an induction from the first-order approxi-
mation (10.1.7). More precisely, induction will furnish a sequence ¢, such that for
z € K,,

(5(n)) |z = t(z)| < enlow — z|.

The constants ¢, will satisfy the recursion ¢, ;1 = [p~® " |c, for some a < 0 which

does not depend on n. Taking d = |p|~'~%/®=1) completes the proof.

Letting ¢; = |p| ! and using (10.1.7) proves S(1). Suppose S(n) holds. Given
T € Ky41, observe that ¢(Trg, ., /k, (z)) = t(x). Thus, by (10.1.5) in the proof of
Corollary 10.1.7, there is some a < 0 such that

| Trg, .1 /K, (7) = pt(2)| < enlo Trg, k() — Trg, . k()]
= cn| Trg, /K, (07 — )|
(10.1.8) < cplplt " ox — x|,

Write z —t(z) = x—p ' Trg, /i, () +p ' Trg, /K, —t(x). Using the ultrametric
property and applying (10.1.7) and (10.1.8) yields

| — t(z)| < max(|lz —p~ ' Trg, /i, (@), [p| " cnlow — )
< max(cr, [p| ™" "¢p)|oT — 7|
= |p|_ap_ncn|0:1: -z,

the final step following from the inequality [}, |p|*“”7i > 1, which holds because
a < 0. Thus, S(n + 1) holds. O

10.1.3 The completion of a Z,-extension and its cohomology

In the usual way, the isometric action of g on K, extends to an action on the
completion X of K., with respect to the valuation metric. We will now use the
continuity of the absolute trace to study the cohomology of this action.
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Theorem 10.1.9. Let x : g — K* be a character of g.

(1)
(2)

H0(97X) =K and dlmK Hl(gaX) = ].;
If x(g) 1is infinite, then Ho(g,X(X)) —0= Hl(g,X(X)).

The proof relies heavily on Corollary 10.1.7 to study the linear operators o — 1
and 0 — X on X, where )\ is a principal unit of Ax which is not a root of unity:

Lemma 10.1.10. Let Xg C X be the kernel of the absolute trace t and let X be a
principal unit of Ax which is not a root of unity.

(1)
(2)
(3)

X = Xo® K as topological K[g]-modules;
K =Xker(oc — 1) and 0 — 1 has a continuous inverse on Xo;

o — X\ has a continuous inverse on X.

Proof. (1) We simply note that ¢t : X — K is a continuous ¥-equivariant surjec-

(2)

tion.

That ¢ — 1 annihilates K is trivial. It remains to prove that ¢ — 1 has a
continuous inverse on Xy. Consider the subspaces K, o = K, N X, consisting
of the trace zero elements of each K,,. Letting K, o = UK, o0 = K N Xp, it
is easy to see as in (1) that K, = K ® K, for 0 <n < oo, and that all such
decompositions are compatible with the natural injections K, — K.

Because char K = 0, o — 1 is injective on each K, o, and therefore invertible
on each K, because dimg K,y < co. Thus, o — 1 is invertible on K .
Furthermore, Corollary 10.1.8 shows that the inverse p of o — 1 is continuous
on K, because |p(z)| < d|z| for some d independent of z. If we can show
that K o is dense in Xy, then p will extend to a continuous inverse to o — 1
on all of Xj.

Given oo € Xy, choose a Cauchy sequence (a;,) in K tending to aso. Write
am = Bm + ym with 8, € K for all 0 < m < 00, vy € Ky for m < oo,
and 7, € Xo. We claim that £, — Bo and 7, — 7. Indeed, t(as) =
t(Bxo) = Poo and t(ay,) = t(Bn) = Bp. Since @, — @0, continuity of ¢ shows
that 8, — . Thus, v, — . Applying this to a € X shows that £, — 0 and
Yn — «, which means that K, is dense in Xj.

For A # 1, o0 — A is trivially bijective on K. Thus, it remains to show that
o — X has a continuous inverse on Xj.

As in (2), if p denotes the inverse to o — 1 on Xy, then

(c=Mp=(e-1)-A=-1)p=1-(A=1p.

Choose d such that for all z, |p(z)| < d|z|. If |A —1|d < 1 then |(A—1)p(y)| <
ly|, which means that 1 — (A — 1)p acts as an isometry. Hence, 1 — (A — 1)p
has a continuous inverse, and therefore so does o — A.

When |A — 1] is too large (i.e., > 1/d), we use the fact that A is a principal
unit. Writing A\ = 1+ 7‘a shows that [A\P" — 1| may be made arbitrarily small.
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In fact, for some n, |\?" — 1|d < 1. Furthermore, because X is not a root of
unity, A?" # 1. In this case, replacing the base field by K,, and ¢ by o?",
the base field independence of Corollary 10.1.8 allows us to reason as we did
when |\ — 1|d < 1 to conclude that " — AP" has a continuous inverse on Xj.
Writing 0" — MW" = (0 — A\)f(0), where f is a polynomial with coefficients in
Z, we see that 0 — X has a continuous inverse on Xj.

O

Proof of Theorem 10.1.9. Let A = x(o~!). If Y is a g-stable subspace of X, then
H%(g,Y (x)) = ker(c — )). Indeed, one inclusion is obvious. In the other direction,
if y € ker(o — A), then o(y) = Ay, so x(0)o(y) = 0.y =y and y is a fixed point for
o (with the twisted action). Thus,

for all /. By Lemma 9.1.1, the action g x Y — Y is continuous, so s.y = y for all
s € g because (o) is dense in g.

Similarly, by continuity, any (continuous!) 1-cocycle of g is determined by its
value at o, and therefore there is a K-linear injection

¢:Z (g, Y (x) = Y(x)

If « = o(B) — AB € im(o — A), then applying ¢ to the 1-cocycle f(s) = s.(A3) — \3
yields a. On the other hand, if f(s) = s.f—[ is a 1-cocycle, then f(o) = o(AB)—8 =
A Yo (B) — AB), so p(Af) = o(B) — A\B. Therefore,

$lpt gy B' (8, Y (X)) = im(o — A),

and thus ¢ induces an identification of H! (g, Y (x)) with a K-subspace of coker(o—\).
By Lemma 10.1.10(2), for A = 1 (the untwisted action) and Y = X, ker(o—1) =
K and coker(o — 1) = K. Thus, H’(g, X) = K and dimg H!(g, X) = 1 because
dimg coker(oc — 1) = 1 and the “identity” mapping x : g = Z, C K yields a
continuous non-zero additive character of g. (That the cohomology class of x is
non-vanishing follows from the fact that im(c — 1) N K =0.) Thus, (1) is proven.
To prove (2), note that if x(g) is infinite, then A = (o~ ') cannot possibly be
a root of unity. Furthermore, A must actually be a principal unit. To see this,
note that the reduction map A* — k* is continuous from the valuation topology
to the discrete topology. Thus, the composite g — k£* must be continuous from the
profinite topology to the discrete topology. If the kernel is a proper open subgroup,
then the image is isomorphic to Z/p"Z for some n > 0. But chark = p, so any
finite subgroup of £* has order prime to p. Thus, g — k£* must send all of g to
1 € k*, and this says precisely that x(o) is a principal unit. Therefore, by Lemma
10.1.10(3), H(g, X (x)) = 0 = H!(g, X (x)). O

Remark 10.1.11. None of the results of Section 10.1 require any ramification hy-
potheses on K, /K. For an application of Theorem 10.1.9 which requires that K,
be unramified, see Proposition 10.3.5. ¢
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10.2 Translating the base field by a Z,-extension
10.2.1 The use of ramification

While the results of Section 10.1.3 do not require ramification in the Z,-extension
K, the rest of our results use ramification in an essential way. Thus, for the
remainder of Part III, K, will be a ramified Z,-extension of K. Such a K, exists
by Section 10.1.1.

The goal of this section is to study what remains of the extension Cg /K over
K, or more precisely to study Cxg/X. The methods will again be based upon
skillful approximation. Let % = Gal(K/K,). Instead of considering Cg directly,
we will use ramification to demonstrate that the continuous cohomology of .77 with
coefficients in Cg is adequately approximated by the discrete cohomology with
coefficients in K. In some sense, we are rescuing the usual use of inflation from
finite stages in the study of Galois cohomology.

Lemma 10.2.1. If M is a direct limit of fields M;, then for any finite extension F of
M, there is some indez i and some finite extension F;/M; such that F; @y, M = F.
In particular, F; and M are linearly disjoint over M;.

Proof. Write F = M|x1,... ,z,]/I, where I is a finitely generated ideal. Fixing a
finite set of generators gi,... ,gm for I, the coefficients of the g; all lie in some M;
because M = lim M;. Thus, writing F; = Milz1,... ,zp)/(91,--- ,9m), we see that
M @, F; = F is a field. But extensions of fields are faithfully flat, so F; must also
be a field, linearly disjoint from M over M;. We easily note in passing that Fj is
separable over M; if F is separable over M, and F; may be taken to be Galois over
M, if F' is Galois over M. O

Now let L be a finite extension of K,. The ring of integers of K, will be denote
A, with maximal ideal mqo.

Lemma 10.2.2. rPI‘L/[(OO (AL) D My

Proof. By the transitivity of the trace, if the Lemma is true after enlarging L to a
finite Galois extension, it is certainly true for arbitrary L. Thus, we may assume
that L/Ky is Galois. By Lemma 10.2.1, there is some Ly/K,, finite such that
Lo ®k, Kx = L. Replacing K by K,, we may assume from the start that L = Ly K,
for some Ly/K linearly disjoint from K.

Let L, = LoK,. By the transitivity of the different (i.e., D/, Dk, /x =
Dr,/k) and (10.1.2) in the proof of Proposition 10.1.6,

o

(10.2.1) V(D /K,) = /_1 (| Gal(K,/K)"|~" —| Gal(L,/K)"|™") dv.

Since Lo/K is finite, there is some h such that Gal(Lo/K)" =1 for all v > h. By
linear disjointness, Gal(L,/K) = Gal(Ly/K) x Gal(K,/K), and therefore

Gal(Ly/ K" = ST e ),
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We see that Gal(Ly/K)” = (1) if and only if Gal(L,/K)" C Gal(K,/K). If this is
the case, then the subgroups Gal(L,/K)" and Gal(Ly/K) of Gal(L,/K) commute
and intersect only at {1}, which means that

_ Gal(L,/K)" Gal(Ly/K)

(10.2.2) Gal(K,/K)’ = Cal(Lo /K = Gal(L,/K)".

Applying (10.2.2) to (10.2.1) shows that

h
@y, /k,) < / | Gal(K,,/K)"| dv.
-1

By a calculation almost identical to (10.1.3) in the proof of Proposition 10.1.6, we
find that v(Dy,/k,) = p~"an, where a, is bounded, say |a,| < a for all n. Given
o € My, there is some ng such that a € K, for all n > ng. Furthermore, because K
is totally ramified, writing () = m% shows that i, — oo as n — oo. On the other
hand, as remarked in the proof of Corollary 10.1.7, if e, is the ramification index of
Ly /Ky, then Trp, /k, (mﬁn) =m}, where j = [({ + v, (Dy, /Kk,))/en|. Inparticular,
j<a+1for£=0,s0Try /k,(AL,) D m&tt. Since i, — oo, there is some m(c)
such that i,,(,) > a + 1, and therefore for any n > m(a) there is a g € Ar, C Af
such that Try, /k, (8) = a. Since Gal(L,/K,) = Gal(Ly/K) = Gal(L/K), this
means that Try/r_ (8) = a. O

For purposes of clarity, we prove the remaining results in some degree of generality.
To do this, we first introduce some terminology.

Suppose F' is a field admitting a non-trivial non-archimedean valuation. Let .4
be a profinite group which acts on F', and let M be an ultrametric normed F-vector
space which is a topological F'{.4 }-module. Let M be the completion of M. If the
N -action on M extends to a continuous action on M (note that such an extension
is unique if it exists), then we will refer to the collection R = (F, 4", M, M ) as a
continuous representation. If char F' = 0, then we will say that R has characteristic
zero. The notation will be shortened to M in an unambiguous context.

Example 10.2.3. If L is an algebraic extension of K and A a closed subgroup of ¢,
then for any subextension F//K C L/K, (F, ./, L, L) is a continuous representation
such that .4 acts by isometries. O

In order to simplify notation, given a continuous representation (F, 4", M, M ),
the discrete cohomology will always refer to the discrete cohomology with coefficients
in M and the continuous cohomology will always mean the continuous cohomology
with coefficients in M.

Given a continuous r-cochain of .# with coefficients in M , compactness of A4
shows that there is a maximal value for |f(s)| as s ranges over .4". Define a metric
on the cochains as usual: |f| = max{|f(s)|}sc.y- The usual uniform continuity
arguments show that C" (A4, M ) is complete with respect to this metric. Discrete
cochains are certainly continuous, so limits of sequences of discrete cochains belong
to the continuous cochains.
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Lemma 10.2.4. If (F, .4, M, M\) s a continuous representation, then the discrete
cochains are dense in the continuous cochains. In particular, if L is an algebraic
extension of K and A is a closed subgroup of &, then C, (A, L) is dense in

cr(AN,L).

isc

Proof. Let B, C M be the open ball of radius 1/n around 0. By density, M =
M + B, for all n, so if 9, : M= M /By, is the canonical map (of groups), it is
easy to see that there is a set-theoretic map ¢, : M /Bn — M such that ¢, ¢, = id.
Since B, is open, M /By, is discrete, so the ¢, are all continuous to the discrete
topology on M. Given a continuous r-cochain f : 5" — M , setting fn, = dpthnf
yields a sequence of discrete cochains (with values in M) such that ¥, f, = ¥, f,

O

ie, |f— fal <1/n.

Notation 10.2.5. When dealing with finite extensions L/K.,, a (discrete) (—1)-
cochain will be an element y of L, and the coboundary of such a cochain will be

oy = Trr k., (¥)-

Proposition 10.2.6. Let 7 act in the usual way on K and let (K, #, M, M\) be

a continuous representation for which € acts by isometries. Suppose further that

M is a discrete F-module, i.e., that M = UM% as % ranges over open subgroups

of . Given a discrete r-cochain f € Cy. (S, M) and a constant ¢ > 1,

(1) if r =0, there is an element x € M7 such that |f — x| < c|df| (in particular,
when M = K, z € Ky);

(2) if r > 0, there is a discrete (r — 1)-cochain g such that |f — dg| < c|df] and
lg| < clf]-

Proof. Because M is discrete, the stabilizer of any element of M is an open subgroup
of 7, and this implies that the natural map

ligﬂH(liisc(Ga'l(L/K—oo)aZw%) - Htliisc(jfa M)

is an isomorphism, where the limit is taken with respect to the inflation maps as L
ranges over finite subextensions L = K 7 ofK /K. Since the inflation maps are all
injective, the big cohomology group may simply be viewed as a union. Therefore, it
suffices to prove the following:

Let L/ Ko be finite with Galois group G, and let M be an ultrametric normed L-
vector space which admits a semi-linear G-action by isometries. For any r-cochain f
and any ¢ > 1, there is an (r —1)-cochain g such that |f —dg| < c|d6f| and |g| < ¢|f].
(This includes r = 0O!)

The point is that a single ¢ may be chosen, independent of the finite subextension
L/K . This independence depends heavily upon the fact that K., /K is ramified.
By Lemma 10.2.2, there is a (—1)-cochain y € L such that |y| < 1 and |dy| > ¢~*
for any value of ¢ > 1. Given such an element, we can even construct a g for any f.
To do this, we define a product (y, f) — y.f as follows:

r=0:y.f=yf
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r>0: (y.f)(s1,... ,5r1) = (1) Y e s152- - sp15(y) f (51,82, ,8r1,5).

Because G acts by isometries and the metric on M is an ultrametric, it is clear that
if [y] <1 then |y.f| < |f].

By a routine calculation, one easily verifies that (d0y)f — é(y.f) = y.6f. Hence,
setting Try k. (y) = x and g = z ' (y.f), we have f — 6g = x '(y.6f). Since
|z~ < cand |y| <1, |z7(y.0f)] < c0f]. 0

10.2.2 The cohomology of 7 with coefficients in Cg

IfR=(F, /N, M, M ) is a continuous representation, call R acyclic if the continuous
cohomology of R vanishes for indices > 1.

Approximation Lemma. A continuous representation (K, #, M, ]/M\) satisfying
the hypotheses of Proposition 10.2.6 is acyclic.

Proof. The proof proceeds by successive approximations by discrete coboundaries
of a continuous cochain representing a cocycle. e

Let f be a continuous cochain representing some cocycle of H" (7, M) (with
r > 0, of course). Take any sequence of discrete cochains (with coefficients in M)
F, — f. Since 0 is continuous and 6f = 0, we may assume that |F, — f| < 27"
and |0F,| < 27%. Fixing a constant ¢ > 0, let G), be chosen as in Proposition
10.2.6, so that |F, — 6G,| < ¢|0F,| and |G,| < ¢|F,|. If f = =3, F, and
gn = an >on_y Gy, where m,, € Z C F is a sequence of integers such that |m,| — oo
as n — 0o, then

If - fn_| Zlf ,,|_| n

s0 fp — f. Similarly,

1

Mp+e mp

— <
|gn+€ gn| > Mt )

and the right-hand side tends to 0 as n — oo for arbitrary fixed £. Thus, the g,
form a Cauchy sequence, so g, — ¢ for some continuous (r — 1)-cochain g. It is easy
to see that |f, — 0gp| < so in the limit f = dg. O

Tl
Proposition 10.2.7. H°(2#,Cg) = X and H"(s#,Cg) =0 for r > 0.

Proof. When r = 0, the result follows immediately from Proposition 10.2.6(1). By
Example 10.2.3, the proof for r > 0 follows from the Approximation Lemma. O

10.3 The Main Results
10.3.1 Fixed points
Theorem 10.3.1. H(¥4,Cxk) = K and dimg H'(¥4,Cg) = 1.
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Proof. To prove the first statement, note that C% = (C7%)9. By Proposition 10.2.7
and Theorem 10.1.9(1), this equals K.
To prove the second statement, recall the inflation-restriction sequence

(10.3.1) 0 — H'(g,X) - HY(¥Y,Ck) — H(#,Ck).
By Theorem 10.1.9(1) and Proposition 10.2.7, the result is proven. O

10.3.2 Twists

Fix a multiplicative character x : ¢ — K*. (By compactness, x must actually take
its values in A*.) Let K, denote the fixed field of ker .

Theorem 10.3.2. If x is ramified, then H*(¥4,Ck(x)) =0 =HY (¥4, Ck(x)).

Proof. Because x is ramified, there is some finite Ky/K such that K. /Ky is a
totally ramified Z,-extension.

Suppose first that Ky = K. Since (Cg(x))? = ((Ck(x))”)?® and # acts
on Ck(x) without a twist, Proposition 10.2.7 and Theorem 10.1.9(2) show that
H%(4,Cx(x)) = 0. For the second result, the inflation-restriction sequence works
just as in (10.3.1) above, except that Proposition 10.2.7 and Theorem 10.1.9(2) make
the outer terms both vanish, yielding H' (¢, C(x)) = 0.

Now suppose that K is any arbitrary finite extension of K. Let % be the open
subgroup fixing Ky. By the case just proven, H(%,Ck(x)) = 0 = H(%,Cxk(x)).
Therefore, in the inflation-restriction sequence

0— HY Y/, H°(%,Ck(x)) = H(¥,Ck(x)) = H'(%,Ck (X)),
the outer terms are zero, completing the proof. O

Remark 10.3.3. Sen’s paper [9] contains a proof of the non-existence of transcen-
dental invariants in Cg (Theorem 10.3.1) which requires no class field theory and
is completely elementary. However, for Tate’s results, one also needs the vanishing
in Theorem 10.3.2, which Sen does not obtain by elementary methods. ¢

10.3.3 An amusing application of the main results

Proposition 10.3.4. H (%, Cy) is non-zero and torsion-free.

Proof. To see that HY(¥, C) is non-zero, consider the p-adic cyclotomic character
ep- A K*-valued character is certainly a 1-cocycle, so €, represents an element of
HY(4,C)). If 5(s) = s(a)/a, then o € H'(¥,Ck(e, ")), so @ = 0 by Theorem
10.3.2. This means that ¢, represents a non-trivial element of H'(¢, C ).

It remains to show that the torsion submodule of H'(%,C¥) is trivial. If a
cocycle f represents an n-torsion cohomology class, then there is a § € Cj such
that forall s € 4, f(s)" = s(B)/B. If ais any nthroot of 8, then f'(s) = f(s)-a/s(a)
takes values in p,,. Since Cg is Hausdorff in the valuation topology, u,, is discrete
because it is finite. Thus, by continuity, f' must factor through the quotient of ¢
by an open subgroup, and therefore f’ is a discrete cocycle. (We have implicitly
used Lemma 9.1.1.) By Hilbert’s Theorem 90, there is some [ € K™ such that
1'(s) = s(B)/B, and therefore f is a coboundary. O
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It seems quite unlikely that HY(%, Cj) is finitely generated. In the special case
where K is a finite unramified extension of Q, for some odd prime p, it is possible
to use Theorem 10.1.9 to produce an enormous subgroup of H! (¥, Cx). The proof
below shows a use of the Theorem when X is the completion of an unramified
Z,-extension of K.

Proposition 10.3.5. Let K be a finite unramfied extension of Q, with p > 2. If
K is an unramified Zy-extension of K with Galois group g and completion X, then
H'(g, X*) is naturally a torsion-free Z, module, and

dimq, (Qp © H'(g, X)) = [ : Q).

In particular, H(9, C) contains a subgroup isomorphic to Z[ Q]

Proof. Because the residue field of K is finite, there is an unramified Z,-extension
K /K, fixed by some closed . C ¢. Write g for Gal(K/K) and let X be the
completion of K. By a Theorem of Sen (see [9]), C% = X. Using the inflation-
restriction sequence

0— H'(g, X*) —» H(¥,C%) — H' (#,C¥)

shows that the second statement follows from the first.

Let o be a topological generator for g. Given a continuous cocycle f : g —
X*, if n > 0 then f(o™) = [[i2, ' o'f(0). Thus, if |f(0)] # 1, then there is a
sequence in g tending to the identity which does not tend to 1 in X *, contradicting
continuity. Therefore, |f(o)| = 1, and this means that the image of (o) is contained
in A%, so by density f(¥¢) C A%. If f = s(a)/a, then multiplying « by a suitable
power of p (which is a uniformizer for X) shows that we may take & € A%. Thus,
H'(g, X*) = H'(g, A%). But A = S x Ux, where S is the group of Teichmiiller
representatives for the multiplicative group of the residue field of X and Uy is the
group of principal units. This factorization of A% is Galois-compatible, which means
that H'(g, AY) = H' (g, k*) x H (g, Ux). Because K, is unramified and X and K
have the same residue field, g is the Galois group of the residue field extension, and
therefore by Hilbert’s Theorem 90 (along with the fact that S-valued cocycles are
continuous for the discrete topology on S) the first factor is the trivial module.

As for the second factor, because X is unramified and p is odd, the p-adic
logarithm provides a g-module isomorphism Ux = Ax. Now, by Lemma 9.1.1,
Lemma 9.2.9 and Theorem 10.1.9(1),

Qp®H1(g, ) = Qp®H1(g,AX) H'(g, X) = K.

By Proposition 10.3.4, H' (g, X*) = H'(g, Ax) is a torsion-free Z,-module. O

Corollary 10.3.6. If K is a finite Galois extension of Q, with p > 2 and L is a

subfield of K such that L/Q, is unramified, then H'(4,C}.) contains a subgroup

isomorphic to Z[ Qo

Proof. This follows from the inflation-restriction sequence and Hilbert’s Theorem
90 for finite Galois extensions. O
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Remark 10.3.7. Consider the diagonal embedding Cx — GL,(Ck). Let f: ¥ —
GL,(Ck) be a cocycle taking values in the image of Cx. If f is a cobound-
ary in HY(¥4,GL,(Ck)), then there is some matrix a such that for all s € ¥,
f(s) = a='s(a). Writing f(s) for the element along the diagonal of f(s), one
has s(a) = f(s)a for all s. This holds if and only if for each coordinate «a;;,

s(ay;) = f(s)aj. Invertibility of o implies that some «;; # 0, so it follows that

f(s) is a coboundary. This shows that the diagonal embedding induces an injec-
tion H'(¥4,C5%) — HY(¥,GL,(Ck)) for all n > 0, so H(¥,GL,(Cg)) # 0 for
all n by Proposition 10.3.4. Thus, in spite of naive expectations which may arise
from the fact that C‘}’} = K, attempts at a continuous analogue of “Galois descent”
from the enormous scalar extension from K to Cg is futile. This further shows
(cf. Section 9.2.3) the desirability of a refinement of the Hodge-Tate condition to
involve something less drastic than applying the “non-invertible” functor Cx ®x( -)
to K[¥]-modules (with finite K-dimension and continuous ¥-action). ¢
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A Invariant Differentials on Group Schemes

Motivated by the classical theory of Lie groups, it is reasonable to expect that
“invariant differentials” should play a useful role in the study of group schemes.
However, in this more general context it takes some work to properly define and
prove the correct adaptations of the classical results. The purpose of this appendix
is to construct invariant differentials on formal group schemes and to show that they
freely generate the module of differentials. Using this information, we can compute
the discriminants of certain isogenies between formal Lie groups (cf. Section 4.3.1).

The proofs we give here apply to both affine and formal group schemes. We give
the proofs in the formal case because we make heavy use of it in Part II. Translating
the results into the affine language simply involves removing “ = 7 symbols and
erasing the words “profinite” and “formal” whenever they occur. (With some care,
these methods can be adapted to suitable non-affine group schemes, but this is not
necessary for our purposes.)

We refer the reader to Section 2.1.1 and Section 2.1.2 for the basic facts and
notations from the theory of pseudocompact rings and formal functors, as we use
these extensively without comment in what follows.

A.1 Definitions

Fix a pseudocompact base ring A and let G = Spf,(B) be a formal group over
S = Spf,4(A). We work in the category of formal S-schemes; to simplify notation,
“T-scheme” will always mean “formal T-scheme” for a formal S-scheme T'. As usual,
Gt = G xg T is the notation for base change. There is a natural identification

G(T) = Go(T).

Definition A.1.1. Given g € G(T), define the left-translation by g to be the func-
torial map

)\g:GT:GTXTTMGTXTGTﬂGT.

Equivalently, A, is the unique morphism G7 — Gr such that for any T-scheme
T" — T and any point h € Gp(T"), Ag(T")(h) = gr'h, where g7 is the image of g in
G7(T') under the base change (pullback) map. The right translation by g, written
pPg, is defined similarly. It is clear that the formation of \; and p, are compatible
with base change and are functorial in G.

Because G is a group scheme, the left-translations A, (for g € G(T)) are auto-
morphisms of the formal T-scheme G7. Yoneda’s Lemma, shows that translation by
the G-valued point idg : G — G, the universal point, acts as a universal translation
in the following sense: Mg, : G X G — G xg G sends a point (z,y) to the point
(yz,y). Given any h € G(T), A is just the base change of Ajq, by h, i.e., the
diagram

GXSTLGXST

(A.1.1) idg xhl lidg h
Aidg a

GxsG——Gxg@G

90



1S cartesian.

Definition A.1.2. A differential w € QIG/S = Q}B/A is left-invariant if for all S-
schemes T — S and all points g € G(T), Aywr = wy under the canonical isomor-

phism A\jQq/g = Qg/g induced by Ay. The set of all left-invariant differential forms

on G will be denoted by ngs.

Remark A.1.3. Tt is clear that for any h € G(T), wr = (idg xh)*wg. By (A.1.1),
(idG Xh) o >‘h = Aidg o (idG Xh),

so we see that
Mwr = A (idg xh)*wg = (ida xh)* A\ wa,

and therefore w is left-invariant if and only if it is invariant under left-translation
by the universal point idg. This shows that Qéf ¢ is identified with the kernel of the
module map

.0l 1
£: Q5 = Qavaya
defined by
w = A, W6 — wa-
It is easy to see that £ is a continuous map of profinite A-modules, and therefore

Qéf ¢ is a closed (and hence profinite) A-submodule of Q}; /s Similarly, it is straight-

forward to see that Qé’fs — Qé /s is a “subfunctor” in the formal group G. It is
not obvious that Q%

G/S
is nonzero in general), but the next section will settle these points. ¢

is of formation compatible with base change on S (or that it

A.2 Existence of invariant differentials

We will now show that the formal relative cotangent space of G at the identity
section can be “propogated by translation” to construct all of the left-invariant
differential forms on G. Let € : § — G be the identity section and let I € B be
the augmentation ideal. Given wy € E*QE/S, the strategy will be to choose any
“lift” w € Qé g such that e*w = wg and to construct from w a left-invariant lift.
The following elegant method is an adaptation to the formal case of the ordinary
scheme-theoretic method in [6, Proposition 1, §4.2].

Suppose for a moment that G is a smooth classical Lie group. If we accept that
the space of global 1-forms is freely spanned by the left-invariant 1-forms, then we
may write any 1-form w as

w(z) = Z a;(z)w;(x)
for all z € G, where the a; are global smooth functions on G and the w; are global

left-invariant 1-forms. We wish to construct a global left-invariant 1-form ' such
that w'(0) = w(0). In other words, we want

W () = 25 (Y ai(0)wi(0)) = 3 ai(0)wi ().
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We desire a functorial construction of w’ from w which is less dependent upon points
and generalizes to (formal) schemes. Given z € G, if jo : G — G x G sends y to
(z,y), then for a left-invariant form w; we have j5(m*w;) = ANiw; = w;. Thus, using
the canonical decomposition

(A.2.1) Qb =PI ® P3Q4,

we see that
(m*wi)(z,y) = n(z,y) + wi(y),
where nn = Y bj(z,y)a;(x) for some 1-forms a;(z) in the cotangent space at z. We

have therefore shown that the “second component” of m*w;(z,y) in (A.2.1) is w;(y).
Thus,

(m*w)(@,y) =1 + 3 ai(ay)wi(y)

where @ = > a;(zy)w;(y) is the second component of (m*w)(z,y). If 6 : G - G x G
is the “twisted diagonal map” which sends x to (z~!,z) then pulling back @ by §
yields

(5 @) (x) = Y ai(0)wi(z) = o' (w).

This gives a way of constructing a left-invariant 1-form ' agreeing with w at 0.
The following is a functorial revision of this point-theoretic argument.

Proposition A.2.1. Given wy € 5*95/5, there is a unique w € Qé’fs such that

e*w = wy.

Proof. To prove existence, let w be any lift of wy (i.e., e*w = wp). (This step uses
the “affineness” of our formal schemes.) Using the natural isomorphism

(A.2.2) P1Q%s ® 05065 = Qiwgayss

write m*w = w; ® wy. Let § : G = G Xg G be the twisted diagonal map given on
the level of points by z +— (!, 2). We claim that w' = 0*wy is a left-invariant lift
of wy. To see that w' lifts wy, we need to show that

e 0wy = e*w.

Consider the base change g of the identity section ¢ : S — G by G — §; that
is, eg(z) = (1,z) on the level of points. Then p; o ¢ factors through the identity
section, so

eq(w2) = eg(wr +wz) =egm'w =w

because m o ¢ = idg. Therefore, it suffices to show that £*0* = e*¢f; to show that
W' lifts wp. But it is easy to see that § o e = g o € as morphisms S — G xg G, so
the result follows by functoriality.

It remains to show that w' is left-invariant. By base change, it suffices to prove
invariance under left-translation by points of G(S). Consider the diagram

A
G———@

(A.2.3) 51 A JJ
Pg—1XAg

GxgG———@GxgG.

92



This commutes by the definition of d. Clearly, p; o (p,-1 X Ay) = py-1 o p1 and
P2 0 (pg-1 X Ag) = Ag o pz, so the map (pg—1 x Ay)* respects the decomposition
(A.2.2). Furthermore, m o (p,-1 X A\g) = m, so writing @; = (p,-1 X A\g)*w; yields

W1®WQ:m*w:(:11®(IJ2,

and therefore w; = @;. But then commutativity of (A.2.3) shows that §*ws is left-
invariant under translations by points of G(S), as desired.

If w and w' are left-invariant lifts of wy, then e*w = e*w’. Since g = A\ 0 ¢ for
any g € G(S), left-invariance shows that

gw=guw,

and functoriality extends the argument to all points of G. Using the universal point
of G, we conclude that w = . O

Corollary A.2.2. The formation of Qéﬁs is naturally compatible with base change
on S as a subfunctor of Qé/s.

Proof. Since 5*05 /s is compatible with base change on S, this follows from Propo-
sition A.2.1. O

Finally, we can prove that the left-invariant differentials span Qé /s Letm:G —
S be the structure morphism.

Theorem A.2.3. There is a unique isomorphism of Og-modules

satisfying €*(ag) = id. This is functorial in G and of formation compatible with
base change on S.

Proof. By uniqueness, Proposition A.2.1 shows that there is an &g-module map
1 1,6 1
6*QG/S — QG/S C QG/S

of formation compatible with base change on S (and functorial in G). Note that by
construction, e*a¢ is the identity on 5*95/5 (using e*7* = 1). Thus, pulling back
by 7 yields an g-module map

Lok k)l 1

By the usual functoriality and base change arguments (using Corollary A.2.2), to
show ag is an isomorphism it suffices to prove that g*aq is an isomorphism for all
g € G(S). Consider the diagram

*

NrterQl, . 9% Nl
g G/S 9°°G/S

(A.2.4) l l

* _x)1 aG 1
7T6QG/S — QG/S,
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where the left column is the isomorphism defined using m o A, = 7 and the right
column is the isomorphism given by functoriality of Q'. If we can show that this
diagram commutes then we will be done, for applying £* to the rows yields the
identity map on the bottom and g* g on the top.

By continuity, it suffices to chase an element of the form z = b® wy, starting
in the upper left of (A.2.4). The left map sends z to z' = (A;')*(b) ® wy and the
bottom map sends z’ to (A\;)*(b)w, where w is the unique left-invariant lift of wp.
On the other hand, the top map takes z to y = b® w and the right map takes y to
(A;l)*(b)()\gl)*w = (A;l)*(b)w because w is left-invariant.

By the uniqueness in Proposition A.2.1, aq is uniquely characterized by the
condition €f,(ag) = id. From the above construction we deduce functoriality in G

and the uniqueness of ag ensures base change compatibility on S. U

Corollary A.2.4. If B = 0(Q), there is a unique isomorphism of profinite B-
modules
S ol o~ 1
B @51) Q. /s Qp /s
inducing the natural map along the identity section. This is functorial in G and of
formation compatible with base change on A. Similarly, there is a natural isomor-
phism
S 7/72 ol
B(%)I/I2 — QG/S.

Proof. This is simply definition chasing in Theorem A.2.3, along with the fact that

Qg?s = 6*95/5 = [ /T2 by Proposition A.2.1 and Lemma 3.1.1. O

The finite (or even affine) cases of Theorem A.2.3 and Corollary A.2.4 are for-
mally identical, as the properties of the sheaf of relative differentials and base change
are the same in the category of schemes affine over a fixed base S.

The abstract methods used in this section also yield some concrete results.

Proposition A.2.5. Let G — S be a formal group. Given w € QIG/S, write m*w =
w1 D wa.

(1) If w is left-invariant, wy = phw.
(2) If w is right-invariant, w; = pjw.

Proof. We consider the case of left-invariance. (The right-invariant case follows from
the obvious alteration of the proof of Proposition A.2.1.) Applying the construction
of Proposition A.2.1 to w, we deduce that §*ws = w. Thus, pjw = p5d*ws = we. 0O

Remark A.2.6. When G is commutative (the case of interest to us), left-invariant
forms w are automatically right-invariant because inversion is a group morphism
which interchanges left- and right-translation. In fact, one can show that the forms
which are simultaneously left- and right-invariant are precisely those forms satisfying
m*w = pjw + psw [1, Theorem 4.1.3]. ¢

Corollary A.2.7. Let G be a commutative formal group scheme over S, and let
[N]: G — G be the map sending x — Nx on the level of points. If w € QLl ., then

G/S7
the natural map [N]*Q};/S — Q};/S sends [N]*(w) to Nw.
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Proof. Write [N] = my o Ay where Ay is the N-fold diagonal map and my is the
N-fold multiplication map. The obvious extension of Proposition A.2.5 and Remark
A 2.6 shows that

(A.2.5) my(w) =plw+ -+ + pyw.

On the other hand, it is clear that under the natural map A}‘V(Q};XS.HXSG/S) —
/50

(A.2.6) AN (piwr + -+ + pywN) = w1+ + W,

so combining (A.2.5) and (A.2.6) yields the Corollary. O

B Connected formal groups in characteristic 0

Throughout this appendix, K is a field of characteristic 0.

We will prove that every connected formal group over K is a formal Lie group
and that every commutative formal Lie group of relative dimension ¢ over K is
isomorphic to Hle Ga.

B.1 Connected formal groups over K are smooth

Proposition B.1.1. Any connected formal group scheme over K is formally smooth.

Proof. Let ¢(G) = A, and let m denote the augmentation ideal of A. Choose a
topological basis {z;} for m/m2. Since A/m = K, it is elementary that any lift of
this basis to a set {y;} C m gives rise to a unique continuous surjection of profinite
K-algebras

K[{Yi}] — A

such that Y; maps to y;. We claim that ¢ is injective. If n = ({Y;}) is the augmen-
tation ideal of K[{Y;}], then Nn? = (0), so if keré # 0 there is ¢ > 0 such that
ker & C nf but ker & ¢ nt+1; by the definition of the y;s, t > 2. Let f € ker & — nt+1,
We know by Corollary A.2.4 that QlG /K is a topologically free profinite A-module
and the dy; lift a topological basis of QlG /K> 50 by the Formal Nakayama’s Lemma,
and topological flatness arguments over the local pseudocompact ring A, we con-

1 . . . . 1 . .
clude that /K has topological basis dy;. Similarly, Q K[{vi}]/K 18 @ topologically

free K[{Y;}]-module with topological generators dY;. The induced map on differ-
entials is d¢ : dY; — dy;, so we see that if f € ker¢, then 0f/0Y; € ker¢ as well.
But then 0f/0Y; € nt for all Y; so because K has characteristic zero we must have
f € nt+1, which is a contradiction. O

B.2 The “formal logarithm”

Given a classical Lie group G, the exponential mapping determines a local isomor-
phism between the Lie algebra of G and a neighborhood of the identity e € G. Given
two points z and y sufficiently close to e, their product zy will also be close to e,
and similarly with inversion. The Campbell-Baker-Hausdorff formula shows that the
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local group structure of G is determined by the structure of the Lie algebra of G.
Because the group law on G is analytic, the power series expansion for zy in terms
of  and y (in local coordinates) and the power series expansion for the inversion
map gives us a formal Lie group G (the “completion of G at the identity”), and in
the commutative case the Campbell-Baker-Hausdorff formula gives an isomorphism
between G and ég, where n = dim G. We have seen in Proposition B.1.1 that any
connected formal group over K is a formal Lie group. We will now show that the
local isomorphism of G' with its tangent space has a formal analogue for connected
commutative formal groups over our field K of characteristic zero.

Example B.2.1. Consider the formal groups G, and G, over K. Because char K =
0, we may define a map R R
exp: G, — Gy,

given on the level of algebras by X + Y >°  Y"/n!. Similarly, we may define
log : Gm — Ga

by Y+ > >°  (=1)"*1 X" /n. The usual formal relations show that these are in fact
morphisms of formal groups over K and that they are mutual inverses. O

Remark B.2.2. As noted in Remark 3.3.4, for a formally smooth formal K-group
with algebra K [{X;}], the image of X; under the comultiplication is X; ® 141 ® X;+
higher order terms. ¢

Theorem B.2.3. Any (smooth) connected commutative formal group G over K is
isomorphic to a direct sum of copies of Gg.

The idea of the proof is to alter the situation of Remark B.2.2 in order to get
rid of the higher order terms in the comultiplication. We will do this in a series
of steps, using “Hochschild cohomology,” which is a functorial version of group
cohomology. Our version will be tailored to suit our needs; for a more comprehensive
version of the theory, see [2, II, §3] and [3, Chapter I, §10]. We omit many routine
details in what follows. All functors below are formal K-functors; that is to say,
functors on the category of finite (Artinian) K-algebras. In this appendiz, and in
this appendiz only, the word group will signify a group in the category of sets (i.e.,
a classical group), group-functor will denote a (possibly non-representable) group-
valued formal functor, and group scheme will denote a pro-representable group-
valued formal functor. (In other words, “group scheme” here means what “formal
group scheme” means everywhere else.)

B.2.1 Hochschild cohomology

Given a commutative group-functor .# and an arbitrary group-functor & which acts
(functorially) on ., define the group of n-cochains, denoted C™(&,.#), to be the
group of morphisms (natural transformations) &" — .#, with the group structure
provided by the group structure on the functor .#. An n-cochain f is then equivalent
to a family of n-cochains from &(R)"™ to .# (R) which varies covariantly with the
finite Artinian K-algebra R.
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As usual, define coboundary homomorphisms, 0" : C™*(&,.#) — C"*Y(&,.#)
given on the level of points by

n

(af)(glv . 7gTL+1) = glf(927' . 7gTL+1) + Z(_l)zf(gla -5 9iGi41, - - 7gn+1) +
=1

(=)™ f(g1,... . gn)-

Define Z"(&,.#) = ker 9" and define B"(®,.#) = im9"~'. The n-th Hochschild
cohomology group is defined to be

H" (&, A) = TS, M) /B (&, ).

This is evidently functorial in .# and ®. Using the convention that &° = Spf K, we
see that H(®,.#) = .#®(K) is the group of ®-invariant elements in . (K). Sim-
ilarly, H (&, .#) is the group of crossed homomorphisms modulo the trivial crossed
homomorphisms (suitably functorially defined). The primary object of interest to
us is the second cohomology H2(®,.#). In this case, we may use the commutativity
of .4 to define a symmetric cohomology group as follows. All elements f of B? are
symmetric, i.e., on points they satisfy f(u,v) = f(v,u). Define the symmetric n-
cochains C¢(®, .#) to be n-cochains f such that f(u1,... ,un) = f(ug),- - Usn))
for all o € S, the symmetric group on n letters. Because B2 C C2, if we define
72 = C? N 72, we may define

(&, M) = 73(&, M) [B* (8, 4).
This is covariant in .#, contravariant in &. The following result is not surprising.

Proposition B.2.4. Given a &-module 4 as above,

(1) there is a bijection between H?(®,.#) and equivalence classes of extensions
(B.2.1) MHE L

of group-functors such that i is an injection giving the kernel of p, p has a
section (which is not required to be a map of group-functors), and the action
of & on the normal subgroup functor .# induced by this extension is the given
action;

(2) if & is commutative and acts trivially on 4, there is a bijection between
H2(&,.#) and extensions (B.2.1) where E is commutative.

Proof. The proof is straightforward and proceeds in just the same way as the classi-
cal proof, except that one works with points of the functors and must check (straight-
forward) functoriality at several points in the proof. O

Corollary B.2.5. If & = @._; &;, then the natural map of groups

jes

Kk H2(®,.4) - [[HE(S;, 4).
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is an isomorphism.

Proof. Given a “symmetric extension” S : . # — E 2 &, k(S) is represented by the
family of symmetric extensions S : .# R E; =p1(&,) 2, ®, given by restricting
the corresponding cochain to the various subgroups &; of &.

Note that for any finite K-algebra R, the exactness of all of the S;(R) and of
S(R) show that E(R) is isomorphic as a group to () F;(R))/N(R), where N(R) C
M (R)® is the subgroup formed by tuples (u;) such that all but finitely many
of the u; are zero and ) u; = 0 in .#Z(R). In other words, the kernel of the
map @ E;j(R) — E(R) comes from identifying the copies of .#Z(R) inside each
E;(R). Therefore, if Ej(R) = .#(R) x &;(R) for all j we see that there is a natural
isomorphism FE(R) = . (R) x &(R) and therefore x is injective.

On the other hand, given a family of extensions S;, we may simply form the
group functor E(R) = (@ E;(R))/N(R), and one easily checks that F — & is
split as a map of formal functors and that p~!(&;) = E;. This shows that & is
surjective. O

B.2.2 An analysis of H%(®,G,)

To prove Theorem B.2.3, we will be interested only in the case where ./#Z = éa and
where & is a group scheme G acting trivially on G, lfB=0 (G), then the cochain
complex C"(G, Ga) may clearly be realized concretely as the group B®7" and the
coboundary maps become

8”(()1@"'@(%) :1®b1®"'®bn+Z(_1)ib1®"'®m*bi®bi+l®'”®bn
=1
+(-D)""h®--®b, 01

extended by continuity to all of C™(G, éa) We will denote this group by C™(G) in
what follows. Similarly, we will write Z™(G) for cocycles, B"(G) for coboundaries,
and H"(G) for cohomology (all taking values in éa)

Suppose G = P, ; Ga. In this case, C™"(G) naturally breaks up as a product
[IC™"(G), where C™"(G) C C™(G) is the closed subspace of given by homogeneous
polynomials of degree r. Furthermore, because m* is homogeneous, this decompo-
sition is respected by the coboundary operator 0, so we see that

H"(G) = [[ Hy"(G)
r=0

and

H2(G) = [[ B2 (6).
r=0

Lemma B.2.6. If G = @, ; G, then HY"(G) =0 for all r > 2.

98



Proof. This relies on a computational Lemma due to Lazard, a special case of which
says that if K has characteristic zero and P is a symmetric homogeneous polynomial
of degree r in two variables satisfying P(Y,Z) — P(X +Y,Z) + P(X,Y + Z) —
P(X,Y) = 0, then there is a ¢ € K such that P = ¢((X +Y)" — X" —Y"). For
details (which are a long string of uninspiring calculations), see [5, p. 44].

By Corollary B.2.5, we reduce the statement to be proven to the case where G =
éa. In this case, using our explicit version of C"(G), we see that any homogeneous
(2,7)-cochain is a symmetric homogeneous polynomial P of degree r in two variables,
and translating the 2-cocycle condition yields P(Y,Z) — P(X +Y,Z) + P(X,Y +
Z) — P(X,Y) = 0. By Lazard’s Lemma, there is a ¢ € K such that P = ¢((X +
Y)" — X" —Y"), and this says precisely that P is a (2, r)-coboundary. O

B.2.3 The proof of Theorem B.2.3

Now suppose that G is any connected commutative formal K-group. By Proposition
B.1.1, we know that &'(G) is isomorphic to K[{X;};cr] for some index set I.

We may again realize the cochain complex C*(G) explicitly, but since m* is no
longer a priori homogeneous, there is no longer a d-compatible gradation C"(G) =
[IC™"(G). Instead, because m* has no constant term, there is a J-compatible
filtration C}'(G) consisting of tensors (polynomials) with no terms of degree less
than . We similarly define C7,., 727, Z7,., B}, and Bg}r. There is an induced

s,ry Hro Hsry Pro

filtration on cohomology, and we let Hg’, denote the rth piece of the graded group
associated to (the filtered group) H2.

Lemma B.2.7. Given a connected commutative formal K-group G, HE’T(G) =0
for all v > 2.

Proof. View O(G) as the algebra for G' = ®;¢ /Gy (with formal comultiplication
X; — Y+ Z;). As noted in Remark B.2.2, m*(X;) = Y; + Z; (mod deg > 2).
Therefore the identity map €'(G) — €(G) induces an isomorphism of complexes of
graded objects gr C*(G") — gr C*(G). The Lemma follows from Lemma B.2.6. [

Lemma B.2.8. Let G be a connected commutative formal K-group with algebra B
and augmentation ideal I. Let J be the mazimal ideal of B® B. If B = K[{X;}]
such that m*X; = X; ®1+1® X; (mod J"), then there is an automorphism of B
determined by X; — X! such that X! = X; (mod I") and m*X! = X!®1 +1® X!
(mod Jnt1).

Proof. Writing m*X; = X; ® 14+1 ® X;+b;, we see by definition that b; = —9X;, so b;
is a 2-cocycle. By Lemma B.2.7, there is some homogeneous ¢; € I" such that d¢c; =
b; (mod J7*1). Letting X; = X;+¢; and using the fact that the ¢; are homogeneous
of degree n shows that X; — X! gives an isomorphism K[{X;}] = K[{X!}] such
that (identifying the two rings) m*X! = X!/®1 +1® X! (mod Jn+1). O

Proof of Theorem B.2.3. This follows from Remark B.2.2 and induction on Lemma
B.2.8; the congruence condition on X; and X shows that in the limit of the in-
duction, we have written €(G) as K[{X;}] such that m*X; = X;®1 4+ 1® X, as
desired. The point is that if {X;,} denotes the formal coordinates at the nth stage

99



of the induction, then X; = lim X;,, € €/(G) makes sense and K[{X;}] = O(G) is
an isomorphism by the Formal Nakayama’s Lemma. Since

for all n > 1, we see that in fact m*X; = X; @1+ 1 ® X;. O
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